精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,CDAB,垂足为DEAC边上一点,EHAB,垂足为H,∠1=∠2

1)试说明DFAC

2)若∠A38°,∠BCD45°,求∠3的度数.

【答案】(1)详见解析;(2)97°

【解析】

1)先根据垂直定义得出∠CDB=EHB=90°,根据平行线判定可得出CDEH,故可得出∠1=ACD,推出∠2=ACD,根据平行线的判定即可得出结论;

2)先根据CDAB得出∠BDC=90°,由直角三角形的性质得出∠B的度数,故可得出∠ACB的度数,再根据平行线的性质即可得出结论.

解:(1DFAC

理由是:∵CDABEHAB

∴∠CDB=EHB=90°

CDEH

∴∠1=ACD

∵∠1=2

∴∠2=ACD

DFAC

2)∵CDAB

∴∠BDC=90°

∵∠BCD45°

∴∠B=90°45°=45°

∵∠A=38°

∴∠ACB=180°-A-B=97°

∵由(1)知DFAC

∴∠3=ACB=97°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】每年的65日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲乙两种型号的设备可供选购.经调查:购买3台甲型设备比购买2台乙型设备多花14万元,购买2台甲型设备比购买3台乙型设备少花4万元.

1)直接写出甲乙两种型号设备每台的价格分别为多少万元;

2)该公司经预算决定购买节省能源的新设备的资金不超过90万元,你认为该公司有几种购买方案?

3)在(2)的条件下,若该公司使用新设备进行生产,已知甲型设备每台的产量为240/月,乙型设备每台的产量为180/月,每月要求总产量不低于2040吨,请你为该公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车销售公司4月份销售某厂汽车,在一定范围内,每辆汽车的进价与销售量有如下关系:若当月仅售出1辆汽车,则该汽车的进价为30万元,每多售出1辆,所有售出汽车的进价均降低0.1万元/辆,月底厂家一次性返利给销售公司,每辆返利0.5万元.

1)若该公司当月售出5辆汽车,则每辆汽车的进价为 万元.

(2)若汽车的售价为31/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角中,DE分别是ABAC边上的点,,且BECD交于点F,若,则( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体.下面是小亮测得的弹簧的长度y与所挂物体质量x的几组对应值.

所挂质量x/kg

0

1

2

3

4

5

弹簧长度y/cm

30

32

34

36

38

40

(1)上表所反映的变化过程中的两个变量,________是自变量,________是因变量;

(2)直接写yx的关系式;

(3)当弹簧长度为130cm(在弹簧承受范围内)时,求所挂重物的质量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,CDAB,垂足为DEAC边上一点,EHAB,垂足为H,∠1=∠2

1)试说明DFAC

2)若∠A38°,∠BCD45°,求∠3的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程m2x2+(2m﹣1)x+1=0有两个不相等的根a,b,

(1)求实数m的取值范围;

(2)是否存在实数m,使方程的两个实数根互为相反数?如果存在求出m的值,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tanACO=2.

(1)求该反比例函数和一次函数的解析式;

(2)求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知B港口位于A观测点北偏东45°方向,且其到A观测点正北风向的距离BM的长为10km,一艘货轮从B港口沿如图所示的BC方向航行4km到达C处,测得C处位于A观测点北偏东75°方向,则此时货轮与A观测点之间的距离AC的长为( )km.

A.8 B.9 C.6 D.7

查看答案和解析>>

同步练习册答案