精英家教网 > 初中数学 > 题目详情
16.如图,把△ABC绕点A逆时针旋转42°,得到△AB′C′,点C′恰好落在边AB上,连接BB′,则∠B′BC′的大小为69°.

分析 由旋转的性质可知AB=AB′,∠BAB′=42°,接下来,依据等腰三角形的性质和三角形的内角和定理可求得∠B′BC′的大小.

解答 解:∵把△ABC绕点A逆时针旋转42°,得到△AB′C′,点C′恰好落在边AB上,
∴∠BAB′=42°,AB=AB′.
∴∠AB′B=∠ABB′.
∴∠B′BC′=$\frac{1}{2}$(180°-42°)=69°.
故答案为:69°.

点评 本题主要考查的是旋转的性质、等腰三角形的性质、三角形的内角和定理,证得△ABB′是等腰三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,∠C=90°,AC=BC=6.点P在边AC上运动,过点P作PD⊥AB于点D,以AP、AD为邻边作?PADE.设□PADE与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x≤6).
(1)求线段PE的长(用含x的代数式表示).
(2)当点E落在边BC上时,求x的值.
(3)求y与x之间的函数关系式.
(4)直接写出点E到△ABC任意两边所在直线距离相等时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,菱形ABCD放置在直线l上(AB与直线l重合),AB=4,∠DAB=60°,将菱形ABCD沿直线l向右无滑动地在直线l上滚动,从点A离开出发点到点A第一次落在直线l上为止,点A运动经过的路径的长度为(  )
A.$\frac{8π}{3}$$+\frac{8\sqrt{3}π}{3}$B.$\frac{16π}{3}$C.$\frac{4π}{3}$+$\frac{4\sqrt{3}π}{3}$D.$\frac{16\sqrt{3}π}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)问题情境:如图1,在正方形ABCD中,E、F、G、H分别为AB,BC,CD,DA边上的动点,连接EG,HF相交于点O,且∠HOE=∠ADC.试探究:EG与FH的数量关系,并说明理由.

(2)拓展延伸:如图2,在菱形ABCD中,E、F、G、H分别为AB,BC,CD,DA边上的动点,连接EG,HF相交于点O,且∠HOE=∠ADC,试探究:(1)中EG与FH的数量关系还成立吗?并说明理由.
(3)反思提升:若将(2)中的菱形ABCD改为平行四边形ABCD(如图3),AB=a,AD=b,其他条件不变,则$\frac{EG}{FH}$=$\frac{b}{a}$的猜想正确吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在菱形ABCD中,点O在对角线AC上,且AO=2CO,连接OB、OD,若OB=OC=OD,AC=3,则菱形的边长为(  )
A.$\sqrt{3}$B.2C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.$\sqrt{16}$等于(  )
A.-4B.4C.±4D.256

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.用配方法解一元二次方程x2-6x=-5的过程中,配方正确的是(  )
A.(x+3)2=1B.(x-3)2=1C.(x+3)2=4D.(x-3)2=4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.某品牌商品,按标价八折出售,仍可获得10%的利润.若该商品标价为275元,则商品的进价为(  )
A.192.5元B.200元C.244.5元D.253元

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,填在各方格中的三个数之间均具有相同的规律,据此规律,n的值是(  )
A.48B.56C.63D.74

查看答案和解析>>

同步练习册答案