精英家教网 > 初中数学 > 题目详情
精英家教网如图,正方形ABCD中,E是CD的中点,EF⊥AE.
求证:(1)△ADE∽△ECF;
(2)BF=3FC;
(3)EF平分∠AFC.
分析:(1)利用互余关系证明∠EFC=∠AED,又有∠ADE=∠FCE=90°,可证△ADE∽△ECF;
(2)由(1)的相似得CF:CE=DE:DA=1:2,可得CF=
1
2
CE=
1
4
CD,得出结论;
(3)延长FE交AD的延长线于G,根据EG=EF,EF⊥AE,得AE垂直平分FG,根据垂直平分线的性质证明结论.
解答:证明:(1)∵∠ADE=∠FCE=90°,又AE⊥EF,
∴∠AED+∠FEC=180°-∠AEF=90°,
又∠EFC+∠FEC=90°,
∴∠EFC=∠AED,
∴△ADE∽△ECF;

(2)∵CE=ED,CD=BC,
由(1)得CF:CE=DE;DA=1:2,∴CF=
1
2
CE=
1
4
CD
从而CF:CB=1:4.
∴BF=3CF.

(3)延长FE交AD的延长线于G.精英家教网
∵∠GDE=∠ECF=90°,∠DEG=∠FEC,又DE=EC,
∴△DEG≌△CEF,
∴∠G=∠EFC,
而EF⊥AE,且EG=EF,
∴AE是FG的垂直平分线,
∴AF=AG,
即∠AFE=∠G=∠EFC,
∴EF平分∠AFC.
点评:本题考查了相似三角形、全等三角形的判定与性质,线段垂直平分线的性质及正方形的性质.关键是利用互余关系证明相似三角形,利用作辅助线构造全等三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案