ÔĶÁ²ÄÁϲ¢»Ø´ðÎÊÌ⣺
²ÄÁÏ£ºÈôa=
2007
2008
£¬b=
2008
2009
£¬±È½Ïa¡¢bµÄ´óС£®
½â£º¡ßa=
2007¡Á2009
2008¡Á2009
=
(2008-1)(2008+1)
2008¡Á2009
=
20082-12
2008¡Á2009
£¬
b=
2008¡Á2008
2009¡Á2008
=
20082
2008¡Á2009
£¬
ÓÖ¡ß20082-12£¼20082£¬ÇÒ·ÖĸÏàͬ£¬
¡àa£¼b£®
ÎÊÌ⣺£¨1£©Ìî¿Õ£º
2008
2009
 
2009
2010
£¨Ì¡¢=¡¢£¼ºÅ£©
£¨2£©µ±n£¾0ʱ£¬Àà±ÈÉÏÃæµÄ·½·¨£¬±È½Ï
n
n+1
Óë
n+1
n+2
µÄ´óС£®
·ÖÎö£º·Ö±ð°ÑËù¸ø·ÖÊý»ò·ÖʽÕûÀíΪͬ·Öĸ·ÖÊý»ò·Öʽ£¬·Ö×Ó´óµÄÊý»òʽ×Ӿʹó£®
½â´ð£º½â£º£¨1£©¡ß
2008
2009
=
2008¡Á2010
2009¡Á2010
=
20092 -1
2009¡Á2010
£¬
2009
2010
=
20092
2009¡Á2010
£¬
ÓÖ20092-12£¼20092£¬ÇÒ·ÖĸÏàͬ£¬
¡à
2008
2009
£¼
2009
2010
£»

£¨2£©
n
n+1
=
n(n+2)
(n+1)(n+2)
=
n2 +2n
(n+1)(n+2)
£¬
n+1
n+2
=
(n+1)2
(n+2)(n+1)
=
n2 +2n+1
(n+1)(n+2)
£¬
¡ß·ÖĸÏàͬ£¬n2+2n£¼n2+2n+1£¬
¡à
n
n+1
£¼
n+1
n+2
£®
µãÆÀ£ºÓõ½µÄ֪ʶµãΪ£ºÁ½¸öÕý·ÖÊý£¬·ÖĸÏàͬ£¬·Ö×Ó´óµÄÊý¾Í´ó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

25¡¢ÔĶÁ²ÄÁϲ¢»Ø´ðÎÊÌ⣺
ÎÒÃÇÖªµÀ£¬Íêȫƽ·½Ê½¿ÉÒÔÓÃƽÃ漸ºÎͼÐεÄÃæ»ýÀ´±íʾ£¬Êµ¼ÊÉÏ»¹ÓÐһЩ´úÊýºãµÈʽҲ¿ÉÒÔÓÃÕâÖÖÐÎʽ±íʾ£¬È磺£¨2a+b£©£¨a+b£©=2a2+3ab+b2£¬¾Í¿ÉÒÔÓÃͼ£¨1£©»òͼ£¨2£©µÈͼÐεÄÃæ»ý±íʾ£®

£¨1£©Çëд³öͼ£¨3£©Ëù±íʾµÄ´úÊýºãµÈʽ£º
£¨2a+b£©£¨a+2b£©=2a2+5ab+2b2
£»
£¨2£©ÊÔ»­Ò»¸ö¼¸ºÎͼÐΣ¬Ê¹ËüµÄÃæ»ý±íʾ£º£¨a+b£©£¨a+3b£©=a2+4ab+3b2£»
£¨3£©Çë·ÂÕÕÉÏÊö·½·¨Áíдһ¸öº¬ÓÐa£¬bµÄ´úÊýºãµÈʽ£¬²¢»­³öÓëËü¶ÔÓ¦µÄ¼¸ºÎͼÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁ²ÄÁϲ¢»Ø´ðÎÊÌ⣺
£¨1£©·½³Ìx2+2x+1=0µÄ¸ùΪx1=-1£¬x2=-1£¬x1+x2=-2£»x1x2=1£®·½³Ì3x2+4x-7=0µÄ¸ùΪx1=1£¬x2=-
7
3
£¬x1+x2=-
4
3
£¬x1x2=-
7
3
£®·½³Ìax2+bx+c=0£¨b2-4ac¡Ý0£©µÄ¸ùΪx1=
-b+
b2-4ac
2a
£¬x2=
-b-
b2-4ac
2a
£¬
x1+x2=
 
£¬x1x2=
 

£¨2£©´Ó£¨1£©ÖÐÄãÒ»¶¨·¢ÏÖÁËÒ»¶¨µÄ¹æÂÉ£¬Õâ¸ö¹æÂÉÊÇ
 
£»
£¨3£©ÓÃÄã·¢ÏֵĹæÂɽâ´ðÏÂÁÐÎÊÌ⣺
¢Ù²»½â·½³Ì£¬Ö±½Ó¼ÆË㣺·½³Ìx2-2x-1=0µÄÁ½¸ù·Ö±ðÊÇx1•x2£¬Ôòx1+x2=
 
£¬x1•x2=
 
£»
¢Ú·½³Ìx2-3x+1=0µÄÁ½¸ù·Ö±ðÊÇx1•x2£¬Ôòx12+x22=
 
£»
¢ÛÒÑÖªÒ»Ôª¶þ´Î·½³Ìx2-3x-3a=0µÄÒ»¸ö¸ùΪ6£¬Çóa¼°·½³ÌµÄÁíÒ»¸ö¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÔĶÁ²ÄÁϲ¢»Ø´ðÎÊÌ⣺
£¨1£©·½³Ìx2+2x+1=0µÄ¸ùΪx1=-1£¬x2=-1£¬x1+x2=-2£»x1x2=1£®·½³Ì3x2+4x-7=0µÄ¸ùΪx1=1£¬x2=-Êýѧ¹«Ê½£¬x1+x2=-Êýѧ¹«Ê½£¬x1x2=-Êýѧ¹«Ê½£®·½³Ìax2+bx+c=0£¨b2-4ac¡Ý0£©µÄ¸ùΪx1=Êýѧ¹«Ê½£¬x2=Êýѧ¹«Ê½£¬
x1+x2=______£¬x1x2=______
£¨2£©´Ó£¨1£©ÖÐÄãÒ»¶¨·¢ÏÖÁËÒ»¶¨µÄ¹æÂÉ£¬Õâ¸ö¹æÂÉÊÇ______£»
£¨3£©ÓÃÄã·¢ÏֵĹæÂɽâ´ðÏÂÁÐÎÊÌ⣺
¢Ù²»½â·½³Ì£¬Ö±½Ó¼ÆË㣺·½³Ìx2-2x-1=0µÄÁ½¸ù·Ö±ðÊÇx1•x2£¬Ôòx1+x2=______£¬x1•x2=______£»
¢Ú·½³Ìx2-3x+1=0µÄÁ½¸ù·Ö±ðÊÇx1•x2£¬Ôòx12+x22=______£»
¢ÛÒÑÖªÒ»Ôª¶þ´Î·½³Ìx2-3x-3a=0µÄÒ»¸ö¸ùΪ6£¬Çóa¼°·½³ÌµÄÁíÒ»¸ö¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÔĶÁ²ÄÁϲ¢»Ø´ðÎÊÌ⣺
²ÄÁÏ£ºÈôa=Êýѧ¹«Ê½£¬b=Êýѧ¹«Ê½£¬±È½Ïa¡¢bµÄ´óС£®
½â£º¡ßa=Êýѧ¹«Ê½=Êýѧ¹«Ê½=Êýѧ¹«Ê½£¬
b=Êýѧ¹«Ê½=Êýѧ¹«Ê½£¬
ÓÖ¡ß20082-12£¼20082£¬ÇÒ·ÖĸÏàͬ£¬
¡àa£¼b£®
ÎÊÌ⣺£¨1£©Ìî¿Õ£ºÊýѧ¹«Ê½______Êýѧ¹«Ê½£¨Ì¡¢=¡¢£¼ºÅ£©
£¨2£©µ±n£¾0ʱ£¬Àà±ÈÉÏÃæµÄ·½·¨£¬±È½ÏÊýѧ¹«Ê½ÓëÊýѧ¹«Ê½µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸