精英家教网 > 初中数学 > 题目详情
问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息
如图1:甲组:测得一根直立于平地,长为80cm的竹竿的影长为60cm;
如图2:乙组:测得学校旗杆的影长为900cm;
如图3:丙组:测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为350cm,影长为300cm.
解决问题:
(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度?
(2)如图3,设太阳光线MH与⊙O相切于点M,请根据甲、丙两组得到的信息,求景灯灯罩的半径?

【答案】分析:(1)根据同一时刻物高与影长成正比即可求出旗杆的高度;
(2)先根据同一时刻物高与影长成正比求出NG的长,再连接OM,由切线的性质可知OM⊥NH,进而可得出△NMO∽△NGH,再根据其对应边成比例列出比例式,然后用半径表示出ON,进行计算即可求出OM的长.
解答:解:(1)∵同一时刻物高与影长成正比,
=
=
解得DE=1200cm;

(2)连接OM,设OM=r,
∵同一时刻物高与影长成正比,
=
=
解得NG=400cm,
在Rt△NGH中,NH===500cm,
设⊙O的半径为r,
∵MH与⊙O相切于点M,
∴OM⊥NH,
∴∠NMO=∠NGH=90°,
又∵∠ONM=∠GNH,
∴△NMO∽△NGH,
=
=
又∵NO=NK+KO=(NG-KG)+KO=400-350+r=50+r,
∴500r=300(50+r),
解得r=75cm.
故景灯灯罩的半径是75cm.
点评:本题考查了把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解,体现了转化的思想.此题的文字叙述比较多,解题时要认真分析题意.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

综合实践
问题背景
某课外兴趣小组在一次折纸活动中,折叠一张带有条格的长方形纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格所在直线的交点,用平滑的曲线顺次连接各交点,得到一条曲线.
探索
如图2,在平面直角坐标系xOy中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=m,AD=n(m≤n),将纸片折叠,MN是折痕,使点B落在边AD上的E处,过点E作EQ⊥BC,垂足为Q,交直线MN于点P,连接OP
(1)求证:四边形OMEP是菱形;
(2)设点P坐标为(x,y),求y与x之间的函数关系式,并写出自变量x的取值范围.(用含m、n的式子表示)
运用
(3)将长方形纸片ABCD如图3所示放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在K,使得△KCF的面积是△KOC面积的
53
,若存在,写出点K的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2010年江苏省镇江市扬中市外国语学校中考数学一模试卷(解析版) 题型:解答题

综合实践
问题背景
某课外兴趣小组在一次折纸活动中,折叠一张带有条格的长方形纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格所在直线的交点,用平滑的曲线顺次连接各交点,得到一条曲线.
探索
如图2,在平面直角坐标系xOy中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=m,AD=n(m≤n),将纸片折叠,MN是折痕,使点B落在边AD上的E处,过点E作EQ⊥BC,垂足为Q,交直线MN于点P,连接OP
(1)求证:四边形OMEP是菱形;
(2)设点P坐标为(x,y),求y与x之间的函数关系式,并写出自变量x的取值范围.(用含m、n的式子表示)
运用
(3)将长方形纸片ABCD如图3所示放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在K,使得△KCF的面积是△KOC面积的,若存在,写出点K的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年福建省龙岩市长汀县河田二中中考数学模拟试卷(解析版) 题型:解答题

综合实践
问题背景
某课外兴趣小组在一次折纸活动中,折叠一张带有条格的长方形纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格所在直线的交点,用平滑的曲线顺次连接各交点,得到一条曲线.
探索
如图2,在平面直角坐标系xOy中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=m,AD=n(m≤n),将纸片折叠,MN是折痕,使点B落在边AD上的E处,过点E作EQ⊥BC,垂足为Q,交直线MN于点P,连接OP
(1)求证:四边形OMEP是菱形;
(2)设点P坐标为(x,y),求y与x之间的函数关系式,并写出自变量x的取值范围.(用含m、n的式子表示)
运用
(3)将长方形纸片ABCD如图3所示放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在K,使得△KCF的面积是△KOC面积的,若存在,写出点K的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案