某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x > 40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元) | x |
销售量y(件) | |
销售玩具获得利润w(元) | |
(1)
(2)玩具销售单价为50元或80元时,可获得10000元销售利润. 销售单价(元) x 销售量y(件) 1000-10x 销售玩具获得利润w(元) -10x2+1300x-30000
(3)商场销售该品牌玩具获得的最大利润为8640元.
解析试题分析:(1)根据题意可得:销售量y=1000-10x;利润w=单件利润×销售量y件,即w=-10x2+1300x-30000;
(2)将w=10000,代入w=-10x2+1300x-30000,求出x的值;
(3)根据题意列出不等式组,再二次函数图像求出最值.
试题解析:(1)
(2)-10x2+1300x-30000=10000销售单价(元) x 销售量y(件) 1000-10x 销售玩具获得利润w(元) -10x2+1300x-30000
解之得:x1=50 x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润.
(3)根据题意得,解之得:44≤x≤46
w=-10x2+1300x-30000=-10(x-65)2+12250
∵a=-10﹤0,对称轴x = 65
∴当44≤x≤46时,y随x增大而增大.
∴当x=46时,W最大值=8640(元)
答:商场销售该品牌玩具获得的最大利润为8640元.
考点:二次函数的应用.
科目:初中数学 来源: 题型:解答题
已知二次函数y=ax2-4x+c的图象过点(-1,0)和点(2,-9).
(1)求该二次函数的解析式并写出其对称轴;
(2)已知点P(2,-2),连结OP,在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
抛物线y=-与y轴交于(0,3),
⑴求m的值;
⑵求抛物线与x轴的交点坐标及顶点坐标;
⑶当x取何值时,抛物线在x轴上方?
⑷当x取何值时,y随x的增大而增大?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
东方商场购进一批单价为20元的日用品,销售一段时间后,经调查发现,若按每件24元的价格销售时,每月能卖36件;若按每件29元的价格销售时,每月能卖21件,假定每月销售件数y(件)与价格x(元/件)之间满足关系一次函数.
(1)试求y与x的函数关系式;
(2)为了使每月获得利润为144元,问商品应定为每件多少元?
(3)为了获得了最大的利润,商品应定为每件多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,等边△ABC的边长为4,E是边BC上的动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).
(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);
(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含的代数式表示);
(3)当(2)中 的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:如图①,在Rt△ACB中,∠C=90º,AC=6cm,BC=8cm,点P由B出发沿BC方向向点C匀速运动,速度为2cm/s;点Q由A出发沿AB方向向点B匀速运动,速度为1cm/s;连接PQ.若设运动的时间为t(s)(0<t<4),解答下列问题:
(1)当t为何值时,PQ的垂直平分线经过点B?
(2)如图②,连接CQ.设△PQC的面积为y(cm2),求y与t之间的函数关系式;
(3)如图②,是否存在某一时刻t,使线段C Q恰好把四边形ACPQ的面积分成1:2的两部分?若存在,求出此时t的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
李经理在某地以10元/千克的批发价收购了2 000千克核桃,并借一仓库储存.在存放过程中,平均每天有6千克的核桃损耗掉,而且仓库允许存放时间最多为60天.若核桃的市场价格在批发价的基础上每天每千克上涨0.5元。
(1)存放x天后,将这批核桃一次性出售,如果这批核桃的销售总金额为y元,试求出y与x之间的函数关系式;
(2)如果仓库存放这批核桃每天需要支出各种费用合计340元,李经理要想获得利润22 500元,需将这批核桃存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.
(1)根据题意,完成下表:
| 每件T恤的利润(元) | 销售量(件) |
第一个月 | | |
清仓时 | | |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知函数y=mx2-6x+1(m是常数).
⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
⑵若该函数的图象与x轴只有一个交点,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com