精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在中,的垂直平分线交于点,交于点的垂直平分线交于点,交于点,连接,求证:的周长;21.

如图所示,在中,若的垂直平分线交于点,交于点的垂直平分线交于点,交于点,连接,试判断的形状,并证明你的结论.

如图所示,在中,若的垂直平分线交于点,交于点的垂直平分线交于点,交于点,连接,若,求的长.

【答案】(1)见解析;(2)见解析;(3)

【解析】试题分析:由直线为线段的垂直平分线,根据线段垂直平分线定理:可得,同理可得,然后表示出三角形的三边之和,等量代换可得其周长等于的长;

,可得,又由的垂直平分线,得出,即可得出,同理:,即可得出结论;

先利用垂直平分线计算出,进而得出,进而得出,最后用勾股定理即可得出结论.

试题解析:∵直线为线段的垂直平分线(已知),

(线段垂直平分线上的点到线段两端点的距离相等),

又直线为线段的垂直平分线(已知),

(线段垂直平分线上的点到线段两端点的距离相等),

的周长(等量代换);

的垂直平分线交于点

同理:

是等边三角形;

的垂直平分线,

中,

的垂直平分线,

中,根据勾股定理得,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,BC=6cmAC=8cm,点P从点C开始沿射线CA方向以1cm/s的速度运动;同时,点Q也从点C开始沿射线CB方向以3cm/s的速度运动.

(1)几秒后PCQ的面积为3cm2?此时PQ的长是多少?(结果用最简二次根式表示)

(2)几秒后以ABPQ为顶点的四边形的面积为22cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠A=60°,点E,F分别在AB,AC上,把∠A沿着EF对折,使点A落在BC上点D处,且使ED⊥BC.
(1)猜测AE与BE的数量关系,并说明理由;
(2)求证:四边形AEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E、F分别是ABCD的边BC、AD上的点,且BE=DF.

(1)试判断四边形AECF的形状;

(2)若AE=BE,BAC=90°,求证:四边形AECF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD⊥AC,垂足为D,AB=AC=9,BC=6,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=4,E,F分别是边BC,CD边上的动点,且AE=AF,设△AEF的面积为y,EC的长为x.

(1)求y与x之间的函数表达式,并写出自变量x的取值范围.
(2)当x取何值时,△AEF的面积最大,最大面积是多少?
(3)在直角坐标系中画出y关于x的函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,已知点A(﹣1,2),B(﹣2,0),C(﹣4,1),把三角形ABC向上平移1个单位长度,向右平移5个单位长度,可以得到三角形A′B′C′.

(Ⅰ)在图中画出△A′B′C′;

(Ⅱ)直接写出点A′、B′、C′的坐标;

(Ⅲ)写出A′C′AC之间的位置关系和大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为4的等腰直角三角形.
(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);
(2)请求出所制作圆锥底面的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△AOB中点O是原点,点A在y轴上,点B的坐标是(2 ,2),小明做一个数学实验,在x轴上取一动点C,以AC为一边画出等边△ACP,移动点C时,探究点P的位置变化情况.

(1)如图,小明将点C移至x轴负半轴,在AC的右侧画出等边△ACP,并使得顶点P在第三象限时,连接BP,求证:△AOC≌△ABP;
(2)小明在x轴上移动点C,并在AC的右侧画出等边△ACP时,发现点P在某函数图象上,请求出点P所在函数图象的解析式.
(3)小明在x轴上移动点C点时,若在AC的左侧画出等边△ACP,点P会不会在某函数图象上?若会在某函数图象上,请直接写出该函数图象的解析式,若不在某函数图象上,请说明理由.

查看答案和解析>>

同步练习册答案