精英家教网 > 初中数学 > 题目详情

【题目】如图,点E在以AB为直径的⊙O上,点C是 的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.
(1)求证:CD是⊙O的切线;
(2)若cos∠CAD= ,BF=15,求AC的长.

【答案】
(1)证明:连接OC,如图1所示.

∵点C是 的中点,

=

∴OC⊥BE.

∵AB是⊙O的直径,

∴AD⊥BE,

∴AD∥OC.

∵AD⊥CD,

∴OC⊥CD,

∴CD是⊙O的切线.


(2)解:过点O作OM⊥AC于点M,如图2所示.

∵点C是 的中点,

= ,∠BAC=∠CAE,

=

∵cos∠CAD=

=

∴AB= BF=20.

在Rt△AOM中,∠AMO=90°,AO= AB=10,cos∠OAM=cos∠CAD=

∴AM=AOcos∠OAM=8,

∴AC=2AM=16.


【解析】(1)连接OC,由点C是 的中点利用垂径定理可得出OC⊥BE,由AB是⊙O的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC⊥CD,由此即可证出CD是⊙O的切线.(2)过点O作OM⊥AC于点M,由点C是 的中点利用圆周角定理可得出∠BAC=∠CAE,根据角平分线的定理结合cos∠CAD= 可求出AB的长度,在Rt△AOM中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长度.
【考点精析】本题主要考查了解直角三角形的相关知识点,需要掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的图象经过点A,B,C,已知点A的坐标为(﹣3,0),点B坐标为(1,0),点C在y轴的正半轴,且∠CAB=30°.

(1)求抛物线的函数解析式;
(2)若直线l:y= x+m从点C开始沿y轴向下平移,分别交x轴、y轴于点D、E.
①当m>0时,在线段AC上否存在点P,使得点P,D,E构成等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
②以动直线l为对称轴,线段AC关于直线l的对称线段A′C′与二次函数图象有交点,请直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是(
A.∠ECD=112.5°
B.DE平分∠FDC
C.∠DEC=30°
D.AB= CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.

(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D,E分别是AB,AC的中点,连接DE并延长到点F,使EF=ED,连接CF.

(1)四边形DBCF是平行四边形吗?说明理由;

(2)DE与BC有什么样的位置关系和数量关系?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)计算:(﹣1)3÷(﹣5)2×(﹣)﹣|0.8﹣1|;

(2)计算:(1+﹣2.75)×(﹣24)+(﹣1)2011﹣|﹣2|;

(3)先化简,再求值,已知|x+2|+(y﹣2=0,求3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】①下午 2 点 10 分时,钟表的时针和分针所成锐角是________

②如图,射线 OC,OD 在∠AOB 的内部,射线 OM,ON 分别平分∠AOD,∠BOC, 且∠BON=50°,∠AOM=40°,∠COD=30°,则∠AOB 的度数为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)5﹣(﹣3)+(﹣2)﹣1;

(2)2×(﹣)÷(﹣3);

(3)﹣5×[1﹣(0.5+ )÷];

(4)20×(﹣)+4×(﹣)+2×(﹣);

(5)﹣14-()÷(﹣)×[﹣2﹣(﹣3)2]﹣(﹣0.52).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上,点 A 的初始位置表示的数为 1,现点 A 做如下移动:第 1 次点 A 向左移动 3 个单位长度至点 A1,第 2 次从点 A1 向右移动 6 个单位长度至点 A2,第 3 次从点 A2 向左移动 9 个单位长度至点 A3,…,按照这种移动方式进行下去,点 A4 表示的数,是__________ ,如果点 An 与原点的距离不小于 20, 那么 n 的最小值是________________

查看答案和解析>>

同步练习册答案