【题目】小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.
【答案】浮漂B与河堤下端C之间的距离为1.5米.
【解析】
试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°-∠ODB-∠ACD=90°,解Rt△ACD,得出AD=ACtan∠ACD=米,CD=2AD=3米,
再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD-CD即可求出浮漂B与河堤下端C之间的距离.
试题解析:延长OA交BC于点D.
∵AO的倾斜角是60°,
∴∠ODB=60°.
∵∠ACD=30°,
∴∠CAD=180°-∠ODB-∠ACD=90°.
在Rt△ACD中,AD=ACtan∠ACD==(米),
∴CD=2AD=3米,
又∵∠O=60°,
∴△BOD是等边三角形,
∴BD=OD=OA+AD=3+=4.5(米),
∴BC=BD-CD=4.5-3=1.5(米).
答:浮漂B与河堤下端C之间的距离为1.5米.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CD·OE;
(3)若cos∠BAD=,BE=6,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各组线段的长为边,能组成三角形的是( )
A. 2cm,5cm,10cmB. 2cm,3cm,5cmC. 2cm,3cm,4cmD. 8cm,4cm,4cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一段抛物线,记为C1,它与轴交于点O,A1;将C1绕点A1旋转180°得C2,交轴于点A2;将C2绕点A2旋转180°得C3,交 轴于点A3;……如此进行下去,得到一“波浪线”.若点P(41,)在此“波浪线”上,则的值为
A.2 B. C.0 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,AB=BC=CD=DA,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )
A. AC⊥BD B. AB∥CD C. ∠A=90° D. ∠A=∠C
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com