精英家教网 > 初中数学 > 题目详情

已知平行四边形ABCD中,点E,F分别在边AB,BC上.
(1)若AB=10,AB与CD间距离为8,AE=EB,BF=FC,求△DEF的面积.
(2)若△ADE,△BEF,△CDF的面积分别为5,3,4,求△DEF的面积.

解:(1)∵AB=10,AB与CD间距离为8,
∴SABCD=80,
∵AE=BE,BF=CF.
∴S△AED=SABCD,S△BEF=SABCD,S△DCF=SABCD
∴S△DEF=SABCD-S△AED-S△BEF-S△DCF=SABCD=30;

(2)设AB=x,AB与CD间距离为y,由S△DCF=4,知F到CD的距离为
则F到AB的距离为y-
∴S△BEF=BE(y-)=3,
∴BE=,AE=x-=
S△AED=AE×y=××y=5,
得(xy)2-24 xy+80=0,
xy=20或4,
∵SABCD=xy>S△AED=5,
∴xy=4不合,
∴xy=20,
S△DEF=SABCD-S△AED-S△BEF-S△DCF=20-5-3-4=8.
分析:(1)因为原平行四边形的面积可以根据题中已知条件求出,而除未知三角形外,其余三个的高和底都是比较特殊,可利用面积的割补法公式求出所求面积.
(2)和(1)区别之处在于已知和未知调换了顺序,应该在(1)的基础上反过来,即需要找出AB、CD的长,以及它二者之间的距离,从而进行解答.
点评:此题考查内容比较多,比较全面,难易程度适中,综合性比较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,已知平行四边形ABCD.
(1)用直尺和圆规作出∠ABC的平分线BE,交AD的延长线于点E,交DC于点F(保留作图痕迹,不写作法);
(2)在第(1)题的条件下,求证:△ABE是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知平行四边形ABCD的周长为32cm,△ABC的周长为20cm,则AC=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知平行四边形ABCD,AD=a,AB=b,∠ABC=α.点F为线段BC上一点(端点B,C除外),连接AF,AC精英家教网,连接DF,并延长DF交AB的延长线于点E,连接CE.
(1)当F为BC的中点时,求证:△EFC与△ABF的面积相等;
(2)当F为BC上任意一点时,△EFC与△ABF的面积还相等吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

49、如图,已知平行四边形ABCD,AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,DC=6cm,AD=2cm,求DE、EF、FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形.

查看答案和解析>>

同步练习册答案