精英家教网 > 初中数学 > 题目详情
已知:如图,在⊙O中,弦AB与CD相交于点M.
(1)若AD=CB,求证:△ADM≌△CBM.
(2)若AB=CD,△ADM与△CBM是否全等,为什么?

【答案】分析:(1)三角形ADM和CBM中,已知的条件有对顶角∠AMD=∠BMC,AD=BC,根据圆周角定理的推论可知
∠A=∠C,因此构成了全等三角形判定中的AAS,可得出两三角形全等.
(2)根据圆周角定理的推论,AB=CD,那么弧ADB=弧CBD,也就是弧AD=弧CB,即AD=CB,接下来的证法和(1)完全相同,所以两三角形是全等的.
解答:(1)证明:在△ADM与△CBM中,
∵∠DMA=∠BMC,
∠DAM=∠BCM,
AD=CB.
∴△ADM≌△CBM(AAS).

(2)解:△ADM≌△CBM.
理由:∵AB=CD,
∴弧ADB=弧CBD,
∴弧AD=弧CB.
∴AD=CB.
与(1)同理可得△ADM≌△CBM.
点评:本题考查了全等三角形的判定,要注意本题中圆周角定理的推论的运用(等弧所对的圆周角相等).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、已知:如图,在?ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.
(1)找出图中所有的互相全等的三角形;
(2)求证:∠ADE=AED.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)计算:(
2
-1)-1+
8
-6sin45°+(-1)2011

(2)先化简,再求值:
x2-2xy+y2
x2-xy
÷(
x
y
-
y
x
)
,其中x=
2
-1,y=1

(3)如图,已知:如图,在?ABCD中,BE=DF.求证:△ABE≌△CDF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在△ABC中,AB=AC,点P是△ABC的中线AD上的任意一点(不与点A重合.将线段AP绕点A逆时针旋转到AQ,使∠PAQ=∠BAC,连接BP,CQ
(1)求证:BP=CQ.
(2)设直线BP与直线CQ相交于点E,∠BAC=α,∠BEC=β,
①若点P在线段AD上移动(不与点A重合),则“α与β之间有怎样的数量关系?并说明理由.
②若点P在直线AD上移动(不与点A重合).则α与β之间有怎样的数量关系?请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•密云县一模)已知:如图,在△ABC中,∠A=∠B=30°,D是AB 边上一点,以AD为直径作⊙O恰过点C.
(1)求证:BC所在直线是⊙O的切线;
(2)若AD=2
3
,求弦AC的长.

查看答案和解析>>

同步练习册答案