精英家教网 > 初中数学 > 题目详情

如图,点E是平行四边形ABCD的边AB的中点,、F是BC边上一动点,线段DE和AF相交于点P,连接PC,过点A作AQ∥PC交PD于Q.
(1)证明:PC=2AQ;
(2)当点F为BC的中点时,试猜想PF=2AP是否成立?若成立,试说明理由;若不成立,试求数学公式的值.

解:(1)〖法一〗如图1,连接AC交DE于点K,
∵AE∥DC,∴∠AEP=∠CDP,
又∠AKE=∠CKD,
∴△AKE∽△CKD,

∵AQ∥PC,
∴∠KAQ=∠PCK,
又∠AKQ=∠CKP,
∴△AKQ∽△CKP.



即PC=2AQ.

(1)〖法二〗如图2,延长DE,CB相交于点R,作BM∥PC.
∵AQ∥PC,BM∥PC,
∴MB∥AQ.
∴∠AQE=∠EMB.
∵E是AB的中点,D、E、R三点共线,
∴AE=EB,∠AEQ=∠BEM.
∴△AEQ≌△BEM.
∴AQ=BM.
同理△AED≌△REB.
∴AD=BR=BC.
∵BM∥PC,
∴△RBM∽△RCP,
相似比是
PC=2MB=2AQ.

(2)如图3,当点F为BC的中点时,PF=2AP不成立.
作BN∥AF,交RD于点N.
则△RBN∽RFP.
∵F是BC的中点,
由(1)[法二]知:RB=BC,
∴RB=RF.
==
又AE=BE,∠NEB=∠PEA,∠NBE=∠PAE.
∴△BNE≌△APE,
∴AP=BN.
∴AP=BN=PF.
=
分析:(1)此题有两种证法:〖法一〗如图1,连接AC交DE于点K,根据AE∥DC.求证△AKE∽△CKD,再利用AQ∥PC,求证△AKQ∽△CKP.再利用其对应边成比例即可证明结论.
(1)〖法二〗如图2,延长DE,CB相交于点R,作BM∥PC,根据AQ∥PC,BM∥PC,和E是AB的中点,D、E、R三点共线,求证△AEQ≌△BEM.同理△AED≌△REB.再求证△RBM∽△RCP,利用其对应边成比例即可证明结论.
(2)如图3,当点F为BC的中点时,PF=2AP不成立.作BN∥AF,交RD于点N.根据△RBN∽RFP.利用F是BC的中点,RB=BC,可得==,又利用AE=BE,∠NEB=∠PEA,∠NBE=∠PAE.求证△BNE≌△APE即可.
点评:此题主要考查相似三角形的判定与性质,平行四边的判定与性质,全等三角形的判定与性质等知识点,难度较大,是一道中考压轴题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•虹口区模拟)如图,EF是平行四边ABCD的对角线BD的垂直平分线,EF与边AD、BC分别交于点E、F. 
(1)求证:四边形BFDE是菱形;
(2)若E为线段AD的中点,求证:AB⊥BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•毕节地区)如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.
(1)如图②,将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD是
平行四边
平行四边
形;
(2)如图③,将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为
90
90
度;连接CC′,四边形CDBC′是
直角梯
直角梯
形;
(3)如图④,将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,点E、F、G、H分别是各边的中点,则按要求完成下列题目.
(1)四边形EFGH是
平行四边
平行四边
形;
(2)四边形ABCD应满足什么条件时,四边形EFGH是菱形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:022

已知如图所示,在平行四边ABCD中,对角线相交于点O,已知AB=24cm,BC=18cm,△AOB的周长是54cm那么△AOD的周长是________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:022

已知如图所示,在平行四边ABCD中,对角线相交于点O,已知AB=24cm,BC=18cm,△AOB的周长是54cm那么△AOD的周长是________cm.

查看答案和解析>>

同步练习册答案