精英家教网 > 初中数学 > 题目详情
2.如图,△ABC各顶点的坐标分别是A(-2,-4),B(0,-4),C(1,-1).
(1)在图中画出△ABC关于原点对称的△A1B1C1
(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2
(3)在(2)的条件下,AC边扫过的面积是$\frac{9}{2}$π.

分析 (1)利用关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1
(2)根据网格特点和旋转的性质画出A、B、C对称点A2、B2、C2,从而得到△A3B3C3
(3)根据扇形的面积公式,利用AC边扫过的面积=S扇形OAA2-S扇形OCC2进行计算即可.

解答 解:解:(1)如图,△A1B1C1为所作;
(2)如图,△A2B2C2为所作;
(3)OC=$\sqrt{2}$,OA=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,
AC边扫过的面积=S扇形OAA2-S扇形OCC2=$\frac{90•π•(2\sqrt{5})^{2}}{360}$-$\frac{90•π•(\sqrt{2})^{2}}{360}$=$\frac{9}{2}$π.

故答案为$\frac{9}{2}$π.

点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了扇形面积的计算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.解方组$\left\{\begin{array}{l}{x-y=1}\\{{x}^{2}-\frac{{y}^{2}}{2}=1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0)
(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;
(2)在运动过程中,不论t取何值,总有EF⊥OA,为什么?
(3)连接AF,在运动过程中,是否存在某一时刻t,使得S△AEF=$\frac{1}{2}$S四边形AEOF
若存在,请求出此时t的值:若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.分解因式
(1)x3-x
(2)3m2n-12mn+12n.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+$\frac{1}{2}$BP的最小值.
(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有$\frac{CD}{CP}$=$\frac{CP}{CB}$=$\frac{1}{2}$,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴$\frac{PD}{BP}$=$\frac{1}{2}$,∴PD=$\frac{1}{2}$BP,∴AP+$\frac{1}{2}$BP=AP+PD.
请你完成余下的思考,并直接写出答案:AP+$\frac{1}{2}$BP的最小值为$\sqrt{37}$.
(2)自主探索:在“问题提出”的条件不变的情况下,$\frac{1}{3}$AP+BP的最小值为$\frac{2}{3}\sqrt{37}$.
(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是$\widehat{CD}$上一点,求2PA+PB的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程:$\frac{x+2}{4}$-$\frac{2x-3}{6}$=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,已知MN是⊙O的切线,且点为点C,AB是⊙O的弦,且AB∥MN.
(1)求证:AC=BC;
(2)如图2,点D、E分别为$\widehat{AB}$、$\widehat{AC}$上的点,且$\widehat{DB}$=$\widehat{AE}$,连接BE,CD,弦CD分别与BE、AB相交于点G、K.求证:∠EGC=∠A;
(3)如图3,在(2)条件下,连接BD、DA,弦DA的延长线与弦CE的延长线相交于点F,若AF=3$\sqrt{10}$,BC=10$\sqrt{2}$,EC=5$\sqrt{2}$,求线段BK的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某装修公司为陶博会布置展厅,为了达到最佳装修效果,需用甲、乙两种型号的瓷砖.经计算,甲种型号瓷砖需用180块,乙种型号瓷砖需用120块,甲种型号瓷砖规格为800mm×400mm,乙种型号瓷砖规格为300mm×500mm,市场上只有同种花色的标准瓷砖,规格为1000mm×1000mm.一块标准瓷砖尽可能多的加工出甲、乙两种型号的瓷砖,公司共设计了三种加工方案(见下表).(图①是方案二的加工示意图)
方案一方案二方案三
甲种型号瓷砖块数12b
乙种型号瓷砖块数a06
设购买的标准瓷砖全部加工完,其中按方案一加工x块,按方案二加工y块,按方案三加工z块,且加工好的甲、乙两种型号瓷砖刚好够用.
(1)表中a=4,b=0;
(2)分别求出y与x,z与x之间的函数关系式;
(3)若用W表示所购标准瓷砖的块数,求W与x的函数关系式,并指出当x取何值时W最小,此时按三种加工方案各加工多少块标准瓷砖?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,点D、E分别是等边△ABC的边AB、AC上的点,满足BD=AE,连结CD、BE交于点O.已知BO=2,CO=5,则AO的长为(  )
A.3B.$\sqrt{21}$C.4D.$\sqrt{19}$

查看答案和解析>>

同步练习册答案