精英家教网 > 初中数学 > 题目详情
如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O相切于点Q.A,B两点同时从点P出发,点A以5cm/s的速度沿射线PM方向运动,点B以4cm/s的速度沿射线PN方向运动.设运动时间为ts.
(1)求PQ的长;
(2)当t为何值时,直线AB与⊙O相切?
(1)连接OQ,
∵PN与⊙O相切于点Q,
∴OQ⊥PN,
即∠OQP=90°,(2分)
∵OP=10,OQ=6,
∴PQ=
102-62
=8(cm).(3分)

(2)过点O作OC⊥AB,垂足为C,
∵点A的运动速度为5cm/s,点B的运动速度为4cm/s,运动时间为ts,
∴PA=5t,PB=4t,
∵PO=10,PQ=8,
PA
PO
=
PB
PQ

∵∠P=∠P,
∴△PAB△POQ,
∴∠PBA=∠PQO=90°,(4分)
∵∠BQO=∠CBQ=∠OCB=90°,
∴四边形OCBQ为矩形.
∴BQ=OC.
∵⊙O的半径为6,
∴BQ=OC=6时,直线AB与⊙O相切.
①当AB运动到如图1所示的位置,
BQ=PQ-PB=8-4t,
∵BQ=6,
∴8-4t=6,
∴t=0.5(s).(6分)
②当AB运动到如图2所示的位置,
BQ=PB-PQ=4t-8,
∵BQ=6,
∴4t-8=6,
∴t=3.5(s).
∴当t为0.5s或3.5s时直线AB与⊙O相切.(8分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的直径BC=4,过点C作⊙O的切线m,D是直线m上一点,且DC=2,A是线段BO上一动点,连接AD交⊙O于G,过点A作AD的垂线交直线m于点F,交⊙O于点H,连接GH交BC于E.
(1)当点A是BO的中点时,求AF的长;
(2)若∠AGH=∠AFD,求△AGH的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,点C在⊙O上,点P是直径AB上的一点(不与A重合),过点P作AB的垂线交BC于点Q.
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.
(2)若cosB=
3
5
,BP=6,AP=1,求QC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠C=90°,CD=6,以CD为直径的⊙O切AB于G,设AG2=y,AC=x.
(1)求y与x的函数关系式,并指出自变量的取值范围.
(2)利用所求出的函数关系式,求当AC为何值时,才能使得BC与⊙O的直径相等?
(3)△ACB有可能为等腰三角形吗?若可能,请求出x的值;若不可能,请说出理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O1与⊙O2相交于A、B两点,PQ切⊙O1于点P,交⊙O2于点Q、M,交AB的延长线于点N.若MN=1,MQ=3,则NP等于(  )
A.1B.
3
C.2D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中∠C=90°、∠A=30°,在AC边上取点O画圆使⊙O经过A、B两点,
(1)求证:以O为圆心,以OC为半径的圆与AB相切.
(2)下列结论正确的序号是______.(少选酌情给分,多选、错均不给分)
①AO=2CO;
②AO=BC;
③延长BC交⊙O与D,则A、B、D是⊙O的三等分点.
④图中阴影面积为:(
1
3
π+
3
8
)•OA2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,若AB=4,AD=3,求OE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=36°,则∠C=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.
(1)证明PA是⊙O的切线;
(2)求点B的坐标.

查看答案和解析>>

同步练习册答案