精英家教网 > 初中数学 > 题目详情

在平面直角坐标中,边长为2的正方形的两顶点分别在轴、轴的正半轴上,点在原点.现将正方形点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点边交轴于点

(1)求边在旋转过程中所扫过的面积;

(2)旋转过程中,当平行时,求正方形旋转的度数;

(3)设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.

 

【答案】

(1)π/2(2)22.5°(3)周长不会变化,证明见解析

【解析】(1)面积=OA OA π45/360=π/2

(2)当MN和AC平行时,AM/AB=CN/CB

因AB=CB,故AM=CN,△OAM≌△OCN

∠AOM=∠CON

又∠CON=∠YOA(因同时旋转),∠CON+∠YOA=45°,故∠YOA=22.5°

(3)周长不会变化。

延长MA交Y轴于D点,则可证:

△OAD≌△OCN, AD=CN,OD=ON

△OMD≌△OMN,MN=MD=MA+AD=MA+NC

所以△MBN的周长为P=BM+BN+MN=BM+BN+MA+NC=AB+BC=2+2=4

(1))因为A点第一次落在直线y=x上时停止旋转,所以OA旋转了45度.所以OA在旋转过程中所扫过的面积为π/2

(2)当MN和AC平行时,∠AOM=∠CON,因同时旋转,∠CON=∠YOA,即正方形旋转的度数为22.5°

(3) 延长MA交Y轴于D点,证得△OAD≌△OCN,△OMD≌△OMN,据此即可证明△MNP的周长等于正方形边长的2倍,据此即可求解

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标中,边长为2的正三角形OAB的顶点A在y轴正半轴上,点O在原点.现将正三角形OAB绕O点顺时针旋转,当A点第一次落在直线y=
3
x
上时停止旋转,旋转过程中,AB边交直线y=
3
x
于点M,点B在x轴投影为N(如图).求:
(1)初始状态时直线AB的解析式;
(2)OA边在旋转过程中所扫过的面积;
(3)△OMN从开始运动到到停止状态前后面积比.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图1).
(1)求边AB在旋转过程中所扫过的面积;
(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;
(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标中,边长为2的正三角形OAB的顶点A在y轴正半轴上,点O在原点.现将正三角形OAB绕O点顺时针旋转,当A点第一次落在直线数学公式上时停止旋转,旋转过程中,AB边交直线数学公式于点M,点B在x轴投影为N(如图).求:
(1)初始状态时直线AB的解析式;
(2)OA边在旋转过程中所扫过的面积;
(3)△OMN从开始运动到到停止状态前后面积比.

查看答案和解析>>

科目:初中数学 来源:2012年河南省中考数学押题试卷(四)(解析版) 题型:解答题

在平面直角坐标中,边长为2的正三角形OAB的顶点A在y轴正半轴上,点O在原点.现将正三角形OAB绕O点顺时针旋转,当A点第一次落在直线上时停止旋转,旋转过程中,AB边交直线于点M,点B在x轴投影为N(如图).求:
(1)初始状态时直线AB的解析式;
(2)OA边在旋转过程中所扫过的面积;
(3)△OMN从开始运动到到停止状态前后面积比.

查看答案和解析>>

同步练习册答案