精英家教网 > 初中数学 > 题目详情

【题目】如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).

(1)求点B的坐标;

(2)已知a=1,C为抛物线与y轴的交点,若点P在抛物线上,且SPOC=4SBOC.求点P的坐标.

【答案】(1)(1,0)(2)(4,21)或(﹣4,5)

【解析】

(1)由抛物线y=ax2+bx+c的对称轴为直线x=﹣1,交x轴于A、B两点,其中A点的坐标为(﹣3,0),根据二次函数的对称性,即可求得B点的坐标;

(2)a=1时,先由对称轴为直线x=﹣1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x﹣3,得到C点坐标,然后设P点坐标为(x,x2+2x﹣3),根据SPOC=4SBOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标.

(1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,

A、B两点关于直线x=﹣1对称,

∵点A的坐标为(﹣3,0),

∴点B的坐标为(1,0);

(2)a=1时,抛物线y=x2+bx+c的对称轴为直线x=﹣1,

=﹣1,解得b=2.

B(1,0)代入y=x2+2x+c,

1+2+c=0,解得c=﹣3.

则二次函数的解析式为y=x2+2x﹣3,

∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.

P点坐标为(x,x2+2x﹣3),

SPOC=4SBOC

×3×|x|=4××3×1,

|x|=4,x=±4.

x=4时,x2+2x﹣3=16+8﹣3=21;

x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.

∴点P的坐标为(4,21)或(﹣4,5).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,按以下步骤作图:为圆心,以长为半径作弧,交于点分别以为圆心,以大于的长为半径作弧,两弧相交于点作射线,交边于点.,则的长为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,的平分线交点,且.

1)求的周长;

2)连结,若,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD⊥CF于为点D,BD与半圆O交于点E.

(1)求证:BC平分∠ABD.

(2)DC=8,BE=4,求圆的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少20千克.

(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?

(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=33°,则∠B的大小是(  )

A. 33° B. 45° C. 57° D. 78°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F

1求证:AEFDEB

2证明四边形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CECA.

(1)求证:BC=CD;

(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰中,腰的平分线交的平分线交.设,则( )

A. k2a B. k3a C. D.

查看答案和解析>>

同步练习册答案