分析 过C作CE∥AD,交AB于点E,只要证明CD=$\frac{\sqrt{5}-1}{2}$BD即可解决问题.
解答 证明:过C作CE∥AD,交AB于点E,
∵CE∥AD,
∴∠1=∠3,∠2=∠4,
∵AD平分外角,
∴∠1=∠2,
∴∠3=∠4,
∴AE=AC,
∵CE∥AD,
∴$\frac{AB}{AE}$=$\frac{BD}{CD}$,
∴$\frac{AB}{AC}$=$\frac{BD}{CD}$,
∵$\frac{AB}{AC}$=$\frac{\sqrt{5}+1}{2}$,
∴$\frac{BD}{DC}$=$\frac{\sqrt{5}+1}{2}$,
∴BD=$\frac{\sqrt{5}+1}{2}$CD,
∴CD=$\frac{\sqrt{5}-1}{2}$BD,
即C是BD的黄金分割点.
点评 本题考查黄金分割点、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com