£¨1£©Èý¸öС×飬ÿ×éÓÐ20ÈË£¬¹ØÓÚÒ»µÀÂú·ÖΪ4·ÖµÄÌâÄ¿£¬Èý¸öС×éµÄµÃ·ÖÇé¿öÈç±íËùʾ£¬Í¨¹ý¹À¼Æ£¬±È½ÏÈý¸öС×éµÃ·ÖµÄƽ¾ùÊýºÍ·½²îµÄ´óС£»
£¨2£©¾ßÌåËãÒ»Ë㣬¿´¿´×Ô¼ºµÄ¹À¼ÆÊÇ·ñÕýÈ·£»
£¨3£©Ð¡Ã÷·¢ÏÖ£¬ÕâÈý¸öͼÖС°Öù×ӵĸ߶ȡ±×ÜÊÇ1£¬2£¬3£¬6£¬8£¬Ö»ÊÇÅÅÁеÄ˳Ðò²»Í¬£¬µ¼ÖÂƽ¾ùÊýºÍ·½²î·¢ÉúÁ˱仯£¬ÇëÄã³¢ÊÔ½«ÕâЩ¡°Öù×Ó¡±ÖØÐÂÅÅÁУ¬Í¨¹ý²»¶Ï³¢ÊÔ£¬Äã¾õµÃ¡°Öù×Ó¡±ÔõÑùÅÅÁУ¬¿ÉÒÔÊÇƽ¾ùÊý×î´ó£¿ÔõÑùÅÅÁУ¬¿ÉÒÔʹ·½²î×îС£¿
¿¼µã£ºÌõÐÎͳ¼Æͼ,·½²î
רÌ⣺
·ÖÎö£º£¨1£©¸ù¾Ýƽ¾ùÊý¹«Ê½ÒÔ¼°·½²îµÄ¼ÆË㹫ʽֱ½Ó¹À¼Æ¼´¿É£»
£¨2£©ÀûÓÃƽ¾ùÊý¹«Ê½ºÍ·½²î¹«Ê½Çó½â£»
£¨3£©¸ù¾Ý¹«Ê½ËµÃ÷ÅÅÁеķ½·¨£®
½â´ð£º½â£º£¨1£©µÚÒ»×éµÄƽ¾ùÊý×î´ó£¬µÚÈý×éµÄƽ¾ùÊý×îС£®
µÚÒ»×éµÄ·½²î×î´ó£¬µÚÈý×éµÄ·½²î×îС£»
£¨2£©
.
x
=
1
n
£¨x1+x2+¡­+xn£©£¬s2=
1
n
[£¨x1-x?£©2+£¨x2-x?£©2+¡­+£¨xn-x?£©2]£¬
µÚÒ»×é
.
x
=
0¡Á1+2¡Á1+3¡Á2+6¡Á3+8¡Á4
20
=2.9£¨·Ö£©£¬
µÚÒ»×éµÄ·½²îS12=
1
20
[£¨0-2.9£©2+£¨1-2.9£©2¡Á2+£¨2-2.9£©2¡Á3+£¨3-2.9£©2¡Á3+£¨4-2.9£©2¡Á8]
=1.39£»
ͬÀí£¬µÚ¶þÖÖµÄƽ¾ùÊýÊÇ£º1.1£¬·½²îÊÇ1.39£»
µÚÈý×éµÄƽ¾ùÊýÊÇ£º2.25£¬·½²îÊÇ£º0.9875£»
£¨3£©µÚÒ»×éµÄƽ¾ùÊý×î´ó£¬µÃ¸ß·ÖÈËÊýÔ½¶àÔòƽ¾ùÊýÔ½´ó£»
µÚÈý×éµÄ·½²î×îС£¬Àëƽ¾ùÊýµÄÊýÖµ½Ó½üµÄÊýÔ½¶à£¬Ôò·½²îԽС£®
µãÆÀ£º±¾Ì⿼²éµÄÊÇÌõÐÎͳ¼ÆͼµÄ×ÛºÏÔËÓ㮶Á¶®Í³¼Æͼ£¬´Óͳ¼ÆͼÖеõ½±ØÒªµÄÐÅÏ¢Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£®ÌõÐÎͳ¼ÆͼÄÜÇå³þµØ±íʾ³öÿ¸öÏîÄ¿µÄÊý¾Ý£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¡÷ABCÖУ¬AE½»BCÓÚµãD£¬¡ÏC=¡ÏE£¬AD£ºDE=3£º5£¬AE=8£¬BD=4£¬ÇóDCµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÿ¸öСÕý·½Ðα߳¤¾ùΪ1£¬ÇóËıßÐÎABCDµÄ±ß³¤ºÍÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚ¡÷ABCÖУ¬ADÊÇ¡ÏBACµÄƽ·ÖÏߣ¬ADµÄ´¹Ö±Æ½·ÖÏßEF½»CBµÄÑÓ³¤ÏßÓÚµãF£¬½»ADÓÚµãE£¬½»ACÓÚµãM£®
£¨1£©¡÷ACFÓë¡÷BAFÏàËÆÂð£¿Çë˵Ã÷ÀíÓÉ£»
£¨2£©Èç¹ûAF=6£¬BD=2£¬AC=4£¬ÇóDCºÍAMµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ΪÁ˹À¼ÆºþÀïÓжàÉÙÌõÓ㣬ÏÈ´ÓºþÀﲶÀÌ100ÌõÓ㶼×÷Éϱê¼Ç£¬È»ºó·Å»ØºþÖÐÈ¥£¬¾­¹ýÒ»¶Îʱ¼ä£¬µÈÓбê¼ÇµÄÓãÍêÈ«»ìºÏÓÚÓãȺºó£¬µÚ¶þÌìÔÙ²¶ÀÌ100ÌõÓ㣬·¢ÏÖÆäÖÐ2ÌõÓбê¼Ç£¬ÄÇôÄã¹À¼ÆºþÀï´óÔ¼ÓÐÓã
 
Ìõ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬½«¡÷ABC·ÅÔÚÿ¸öСÕý·½Ðεı߳¤Îª1µÄÍø¸ñÖУ¬µãA¡¢B¡¢C¾ùÂäÔÚ¸ñµãÉÏ£®½«Ï߶ÎABÈƵãB˳ʱÕëÐýת90¡ã£¬µÃÏ߶ÎA¡äB£¬µãAµÄ¶ÔÓ¦µãΪA¡ä£¬Á¬½ÓAA¡ä½»Ï߶ÎBCÓÚµãD£®
£¨¢ñ£©×÷³öÐýתºóµÄͼÐΣ»
£¨¢ò£© 
CD
DB
=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬B¡¢OÊÇÏ߶ÎACµÄÈýµÈ·Öµã£¬ÒÔOΪԲÐÄ£¬OCΪ°ë¾¶×÷¡ÑO£¬DΪ¡ÑΪÉÏÒ»µãÇÒDC=DA£®
£¨1£©ÅжÏADÓë¡ÑOµÄλÖùØϵ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨2£©Èô¡ÑOµÄ°ë¾¶Îª2£¬ÇóÒõÓ°²¿·ÖµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¶þ´Îº¯Êýy=ax2+bxµÄͼÏó¾­¹ýÔ­µã£¬¶¥µãµÄ×Ý×ø±êΪ2£¬ÈôÒ»Ôª¶þ´Î·½³Ì
ax2+bx+k=0ÓÐʵÊý¸ù£¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢k¡Ü-2B¡¢k¡Ý2
C¡¢k¡Ü2D¡¢k¡Ý-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁÏÂÃæ²ÄÁÏ£º
Èçͼ1£¬ÔÚ¡÷ABCÖУ¬DÊÇBC±ßÉϵĵ㣨²»ÓëµãB¡¢CÖغϣ©£¬Á¬½áAD£®
£¨1£©µ±µãDÊÇBC±ßÉϵÄÖеãʱ£¬S¡÷ABD£ºS¡÷ABC=
 
£»
£¨2£©Èçͼ2£¬ÔÚ¡÷ABCÖУ¬µãOÊÇÏ߶ÎADÉÏÒ»µã£¨²»ÓëµãA¡¢DÖغϣ©£¬ÇÒAD=nOD£¬Á¬½áBO¡¢CO£¬ÇóS¡÷BOC£ºS¡÷ABCµÄÖµ£¨Óú¬nµÄ´úÊýʽ±íʾ£©£»
£¨3£©Èçͼ3£¬OÊÇÏ߶ÎADÉÏÒ»µã£¨²»ÓëµãA¡¢DÖغϣ©£¬Á¬½áBO²¢ÑÓ³¤½»ACÓÚµãF£¬Á¬½áCO²¢ÑÓ³¤½»ABÓÚµãE£¬²¹È«Í¼Ðβ¢Ö±½Óд³ö
OD
AD
+
OE
CE
+
OF
BF
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸