精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为10的菱形ABCD中,对角线BD16,对角线ACBD相交于点G,点O是直线BD上的动点,OEABEOFADF.

(1)求对角线AC的长及菱形ABCD的面积.

(2)如图①,当点O在对角线BD上运动时,OEOF的值是否发生变化?请说明理由.

(3)如图②,当点O在对角线BD的延长线上时,OEOF的值是否发生变化?若不变,请说明理由;若变化,请探究OEOF之间的数量关系.

【答案】1)12;96 2)答案见解析 3)答案见解析

【解析】

1)根据菱形的对角线互相垂直平分求出BG,再利用勾股定理列式求出AG,然后根据AC=2AG计算即可得解;再根据菱形的面积等于对角线乘积的一半列式计算即可得解;

2)连接AO,根据SABD=SABO+SADO列式计算即可得解;

3)连接AO,根据SABD=SABO-SADO列式整理即可得解.

解:(1)在菱形ABCD中,AGCGACBDBGBD×168

由勾股定理得AG

所以AC2AG2×612.

所以菱形ABCD的面积=AC·BD×12×1696.

(2)不发生变化.理由如下:如图①,连接AO,则SABDSABOSAOD

所以BD·AGAB·OEAD·OF

×16×6×10·OE×10·OF.

解得OEOF9.6,是定值,不变.

(3)发生变化.如图②,连接AO,则SABDSABOSAOD

所以BD·AGAB·OEAD·OF.

×16×6×10·OE×10·OF.

解得OEOF9.6,是定值,不变.

所以OEOF的值发生变化,OEOF之间的数量关系为OEOF9.6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.

(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.
(2)求甲、乙第一次相遇的时间.
(3)直接写出乙回到侧门时,甲到侧门的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=3ax2+2bx+c,
(Ⅰ)若a=b=1,c=﹣1,求该抛物线与x轴公共点的坐标;
(Ⅱ)若a=b=1,且当﹣1<x<1时,抛物线与x轴有且只有一个公共点,求c的取值范围;
(Ⅲ)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AC分别在x轴上、y轴上,CB//OAOA=8,若点B的坐标为(a,b),b=.

(1)直接写出点ABC的坐标;

(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间

(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.

(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半径;
②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为积极响应政府提出的绿色发展·低碳出行号召,某社区决定购置一批共享单车.经市场调查得知,购买6辆男式单车与8辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16 000元.

(1)求男式单车和女式单车的单价;

(2)该社区要求男式单车比女式单车多5辆,两种单车至少需要22辆,购置两种单车的费用不超过50 000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.
(1)如图1,若该抛物线经过原点O,且a=﹣
①求点D的坐标及该抛物线的解析式;
②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;

(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名工人同时加工同一种零件,现根据两人7天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题:

相关统计量表:

量数

众数

中位数

平均数

方差

   

   

2

1

1

1

次品数量统计表:

天数

1

2

3

4

5

6

7

2

2

0

3

1

2

4

1

0

2

1

1

0

   

(1)补全图、表.

(2)判断谁出现次品的波动小.

(3)估计乙加工该种零件30天出现次品多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在乘法公式的学习中,我们采用了构造几何图形的方法研究问题,借助直观、形象的几何模型,加深对乘法公式的认识和理解,从中感悟数形结合的思想方法,感悟几何与代数内在的统一性,根据课堂学习的经验,解决下列问题:

1)如图①边长为(x+3)的正方形纸片,剪去一个边长为x的正方形之后,剩余部分可拼剪成一个长方形(不重叠无缝隙),则这个长方形的面积为   (用含x的式子表示).

2)如果你有5张边长为a的正方形纸,4张长、宽分别为abab)的长方形纸片,3张边长为b正方形纸片.现从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(不重叠无缝隙),则拼成的正方形的边长最长可以为   

Aa+bBa+2bCa+3bD.2a+b

31个大正方形和4个大小完全相同的小正方形按图②③两种方式摆放,求图③中,大正方形中未被4个小正方形覆盖部分的面积.(用含mn的代数式表示)

查看答案和解析>>

同步练习册答案