如图,AB为⊙O的直径,弦CD⊥AB于点E.
(1)当AB=10,CD=6时,求OE的长;
(2)∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B点)上移动时,对于点P,下面三个结论:
①到CD的距离保持不变;②平分下半圆;③等分.
其中正确的为 ,请予以证明.
(1)4(2) ②,证明见解析
【解析】解(1)∵直径AB⊥弦CD,
∴AB平分弦CD,即CE=CD=3.………………………………2分
在Rt△OCE中,由勾股定理,
得OE===4;…………………………………4分
(2) ② ,………………………………………………………………6分
证明:连结OP(如图2).
………………………………………………7分
∵OC=OP,∴∠2=∠3,……………………………………………8分
又∵∠1=∠2,
∴∠1=∠3,
∴CD∥OP.………………………………………………………………9分
∵CD⊥AB,∴OP⊥AB,…………………………………………10分
∴∠AOP=∠BOP=90°,∴=,……………………12分
即点P平分下半圆.
(1)由垂径定理求CE,在Rt△OCE中,由勾股定理求OE;
(2)正确的为②,连接OP,利用角平分线的定义得∠1=∠2,由半径OC=OP,得∠2=∠3,从而有∠1=∠3,则OP∥CD,CD⊥AB,则OP⊥AB,即点P平分下半圆.
科目:初中数学 来源: 题型:
如图,AB为⊙O的直径,弦CD⊥AB于点E.
(1)当AB=10,CD=6时,求OE的长;
(2)∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B点)上移动时,对于点P,下面三个结论:
①到CD的距离保持不变;②平分下半圆;③等分.
其中正确的为 ,请予以证明.
查看答案和解析>>
科目:初中数学 来源:2012届广东省华侨中学九年级下学期第一次模拟数学卷(带解析) 题型:解答题
如图,AB为⊙O的直径,弦CD⊥AB于点E.
(1)当AB=10,CD=6时,求OE的长;
(2)∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B点)上移动时,对于点P,下面三个结论:
①到CD的距离保持不变;②平分下半圆;③等分.
其中正确的为 ,请予以证明.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年湖北黄冈市十校九年级第一学期期中联考数学试卷(解析版) 题型:选择题
如图.AB是⊙O的直径,E是弧BC的中点,OE交BC于点D,OD=3,DE=2,则AD的长为( ).
A. B.3 C.8 D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com