精英家教网 > 初中数学 > 题目详情
14.关于x的方程2x2-ax+1=0一个根是1,则它的另一个根为$\frac{1}{2}$.

分析 设方程的另一个根为t,根据根与系数的关系得到1•t=$\frac{1}{2}$,然后解关于t的方程即可.

解答 解:设方程的另一个根为t,
根据题意得1•t=$\frac{1}{2}$,解得t=$\frac{1}{2}$.
故答案为$\frac{1}{2}$.

点评 本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.如果(x-2)(x-3)=x2+px+q,那么p、q的值是(  )
A.p=-5,q=6B.p=1,q=-6C.p=1,q=6D.p=-1,q=6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.方程x+2y=7在正整数范围内的解有(  )
A.1个B.3个C.4个D.无数个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程组:
(1)$\left\{\begin{array}{l}2x+y=5\\ x-y=4\end{array}\right.$                
(2)$\left\{{\begin{array}{l}{2x-3y=6}\\{3x-2y=4}\end{array}}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程组$\left\{\begin{array}{l}x-3y=2\\ 2x+y=18\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解方程组:$\left\{\begin{array}{l}{x-y=5}\\{3x+y=3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年四川省成都市金堂县八年级上学期期末考试数学试卷就(解析版) 题型:填空题

有长度为9cm,12cm,15cm,36cm,39cm的五根木棒,从中任取三根可搭成(首尾连接)直角三角形的概率为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.

(1)阅读填空
如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.
理由:连接AH,EH.
∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.
∵DH⊥AE∴∠ADH=∠EDH=90°
∴∠HAD+∠AHD=90°
∴∠AHD=∠HED∴△ADH∽△HDE.
∴$\frac{AD}{DH}$=$\frac{DH}{DE}$,即DH2=AD×DE.
又∵DE=DC∴DH2=AD•DC.即正方形DFGH与矩形ABCD等积.
(2)类比思考
平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.
(3)解决问题
三角形的“化方”思路是:先把三角形转化为等积的矩形(填写图形各称),再转化为等积的正方形.
如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.
(不要求写具体作法,但要保留作图痕迹)
(4)拓展探究
n边形(n>3)的“化方”思路之一是:把n边形转化为n-1边形,…,直至转化为等积三角形,从而可以化方.
如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,一个底面周长为24cm,高为5cm的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为13cm.

查看答案和解析>>

同步练习册答案