【题目】如图,平面直角坐标系中,,反比例函数在第一象限内的图象分别与线段交于点,连接,如果点关于的对称点恰好落在边上,那么的值为______.
【答案】12
【解析】
根据A(8,0),B(8,4),C(0,4),可得矩形的长和宽,易知点F的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点F的纵坐标和点E的横坐标,由三角形相似和对称,可求出AD的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.
过点E作EG⊥OA,垂足为G,设点B关于EF的对称点为D,连接DF、ED、BD,如图所示:
则△BEF≌△DEF,
∴BD=DF,BE=DE,∠FDE=∠FBE=90°,
∴∠EDG+∠ADF=∠ADF+∠AFD,
∴∠EDG=∠AFD,
∵∠EGD=∠DAF,
∴△ADF∽△GED,
∴,
∴AD:EG=BD:BE,
∵A(8,0),B(8,4),C(0,4),
∴AB=OC=EG=4,OA=BC=8,
∵E、F在反比例函数的图象上,
∴,
∴,,
∴,
∴,
∴
在Rt△ADF中,由勾股定理:AD2+AF2=DF2
即:, 解得:k=12,
故答案为12.
科目:初中数学 来源: 题型:
【题目】综合与探究:
如图1,抛物线与轴交于两点(点在点的左侧),顶点为,为对称轴右侧抛物线的一个动点,直线与轴于点,过点作,交轴于点.
(1)求直线的函数表达式及点的坐标;
(2)如图2,当轴时,将以每秒1个单位长度的速度沿轴的正方向平移,当点与点重合时停止平移.设平移秒时,在平移过程中与四边形重叠部分的面积为,求关于的函数关系式,并写出自变量的取值范围;
(3)如图3,过点作轴的平行线,交直线于点,直线与交于点,设点的横坐标为.
①当时,求的值;
②试探究点在运动过程中,是否存在值,使四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们学习了勾股定理后,都知道“勾三、股四、弦五”.
观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.
(1)请你根据上述的规律写出下一组勾股数:________.
(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为________和________,请用所学知识说明它们是一组勾股数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.
(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.
(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某公园内健身的太空漫步机,当人踩在踏板上,握住扶手,两腿迈开到一定角度时的示意图如图所示,某个高为分米的石凳旁边建一个太空漫步机,为方便行人通过,踏板与石凳之间保持了一定的距离,测得踏板静止时分米,分米,交于点,,且,则的长为_____分米;在旋转过程中,当点与点的距离最小时,此时点到的距离为_______分米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=-x2-2x+c与x轴的一个交点是(1,0).
(1)C的值为_______;
(2)选取适当的数据补填下表,并在平面直角坐标系内描点画出该抛物线的图像;
|
|
|
| ||||
|
|
(3)根据所画图像,写出y>0时x的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(方法回顾)连接三角形任意两边中点的线段叫三角形的中位线,探索三角形中位线的性质,方法如下:
①如图1,D、E分别是AB、AC中点,延长DE到F,使EF=DE,连接CF;
②证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到线段DE与BC的位置关系和数量关系分别为_______、________;
(2)(初步运用)如图2,正方形ABCD中,E为边AD中点,G、F分别在边AB、CD上,且AG=2,DF=3,∠GEF=90°,求GF长.
(3)(拓展延伸)如图3,四边形ABCD中,∠A=100°,∠D=110°,E为AD中点,G、F分别为AB、CD边上的点,若AG=2,DF=,∠GEF=90°,求GF长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
其中正确的是( )
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com