精英家教网 > 初中数学 > 题目详情
如图,抛物线经过A,C,D三点,且三点坐标为A(-1,0),C(0,5),D(2,5),抛物线与x轴的另一个交点为B点,点F为y轴上一动点,作平行四边形DFBG,
(1)B点的坐标为______;
(2)是否存在F点,使四边形DFBG为矩形?如存在,求出F点坐标;如不存在,说明理由;
(3)连结FG,FG的长度是否存在最小值?如存在求出最小值;若不存在说明理由;
(4)若E为AB中点,找出抛物线上满足到E点的距离小于2的所有点的横坐标x的范围:______.
(1)∵C(0,5),D(2,5),
∴抛物线的对称轴为直线x=
2
2
=1,
∵A(-1,0),
∴2×1-(-1)=3,
∴点B的坐标为(3,0);

(2)如图,连接CD,则∠DCF=90°,
∵四边形DFBG为矩形,
∴∠DFC+∠OFB=180°-90°=90°,
∴∠DFB=90°
∵∠OFB+∠OBF=90°,
∴∠DFC=∠OBF,
又∵∠DCF=∠FOB=90°,
∴△CDF△OFB,
CD
OF
=
CF
OB

∵B(3,0),C(0,5),D(2,5),
∴CD=2,OB=3,OC=5,
∴CF=5-OF,
2
OF
=
5-OF
3

整理得,OF2-5OF+6=0,
解得OF=2或OF=3,
∴点F的坐标为(0,2)或(0,3);

(3)连接BD,设FG、BD相交于点H,
∵四边形DFBG是平行四边形,
∴FG、BD互相平分,
∴FG=2FH,
又∵B(3,0),D(2,5),
∴点H的坐标为(2.5,2.5),
根据垂线段最短,FH⊥y轴时,FH最短,
此时,FH=2.5,
FG=2FH=2×2.5=5;

(4)设抛物线解析式为y=a(x-1)2+k(a≠0),
把点A、C的坐标代入得,
4a+k=0
a+k=5

解得
a=-
5
3
k=
20
3

∴抛物线解析式为y=-
5
3
(x-1)2+
20
3

∵E为AB中点,
∴点E的坐标为(1,0),
∴以E为圆心,以2为半径的圆为(x-1)2+y2=4,
与抛物线解析式联立消掉(x-1)2得,-
5
3
(4-y2)+
20
3
=y,
整理得,5y2-3y=0,
解得y1=0,y2=
3
5

y=
3
5
时,-
5
3
(x-1)2+
20
3
=
3
5

整理得,(x-1)2=
91
25

解得x1=
5-
91
5
,x2=
5+
91
5

∴-1<x<
5-
91
5
5+
91
5
<x<3时,抛物线上的点到E点的距离小于2.
故答案为:(1)(3,0);(4)-1<x<
5-
91
5
5+
91
5
<x<3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(2一g一•昆明)在平面直角坐标系v,抛物线经过O(一,一)、A(4,一)、E(九,-
2
)三点.
(g)求此抛物线的解析式;
(2)以OA的v点M为圆心,OM长为半径作⊙M,在(g)v的抛物线上是否存在这样的点P,过点P作⊙M的切线l,且l与x轴的夹角为九一°?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题v的结果可保留根号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;
(2)若与x轴的两个交点为A、B,与y轴交于点C.在该抛物线上找一点D,使得△ABC与△ABD全等,求出D点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-x2+bx+c与x轴交于点A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).
(1)求抛物线的解析式;
(2)求出该抛物线的对称轴及顶点D的坐标;
(3)若点P在抛物线上运动(点P异于点D),当△PAB的面积和△DAB面积相等时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8),
(1)试求抛物线的解析式;
(2)设点D是该抛物线的顶点,试求直线CD的解析式;
(3)若直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上、下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,把△OAB放置于平面直角坐标系xOy中,∠OAB=90°,OA=2,AB=
3
2
,把△OAB沿x轴的负方向平移2OA的长度后得到△DCE.
(1)若过原点的抛物线y=ax2+bx+c经过点B、E,求此抛物线的解析式;
(2)若点P在该抛物线上移动,当点P在第一象限内时,过点P作PQ⊥x轴于点Q,连结OP.若以O、P、Q为顶点的三角形与以B、C、E为顶点的三角形相似,直接写出点P的坐标;
(3)若点M(-4,n)在该抛物线上,平移抛物线,记平移后点M的对应点为M′,点B的对应点为B′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M′B′CD的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点A(-1,b),与y轴相交于点B,且∠ABO的余切值为3.
(1)求点B的坐标;
(2)求这个函数的解析式;
(3)如果这个函数图象的顶点为C,求证:∠ACB=∠ABO.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

矩形ABCD的边长AB=3,AD=2,将此矩形放在平面直角坐标系中,使AB在x轴的正半轴上,点A在点B的左侧,另两个顶点都在第一象限,且直线y=
3
2
x-1
经过这两个顶点中的一个.
(1)求A、B、C、D四点坐标;
(2)以AB为直径作⊙M,记过A、B两点的抛物线y=ax2+bx+c的顶点为P.
①若P点在⊙M和矩形内,求a的取值范围;
②过点C作CF切⊙M于E,交AD于F,当PFAB时,求抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为4,点P是AB上不与A、B重合的任意一点,作PQ⊥DP,Q在BC上,设AP=x,BQ=y,
(1)求y与x之间的函数关系式,并指出自变量x的取值范围;
(2)求函数图象的顶点坐标,并作出大致图象.

查看答案和解析>>

同步练习册答案