精英家教网 > 初中数学 > 题目详情

如图,以△ABC的边AB为直径的⊙O与边BC交于点D,过点DDEAC,垂足为E,延长ABED交于点FAD平分∠BAC.(1)求证:EF是⊙O的切线;(2)若AE=3,BF=2,求⊙O的半径.

【解析】(1)连接OD,利用切线性质求证

(2)设⊙O的半径为x.通过△ODF∽△AEF,解得x的值

 

解:(1)连接OD

        则∠OAD=∠ODA.………………………………………1分

∵∠OAD=∠CAD

        ∴∠ODA=∠CAD

        ∴ODAC.………………………………………………3分

DEAC

EFOD.………………………………………………4分

EF是⊙O的切线. ……………………………………5分

(2)设⊙O的半径为x.

     ∵ODAE

     ∴△ODF∽△AEF.  ……………………………………6分

     ∴,即.…………………………7分

     解得    x1=2,x2(舍去).    

∴⊙O的半径为2. ……………………………………10分

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.
(1)当∠BAC满足什么条件时,四边形ADFE是矩形;
(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;
(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以△ABC的边AB为直径作⊙O,交BC于D点,交AC于E点,BD=DE
(1)求证:△ABC是等腰三角形;
(2)若E是AC的中点,求
BD
的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•峨眉山市二模)如图,以△ABC的边AB为直径作⊙O,BC与⊙O交于D,D是BC的中点,过D作DE⊥AC,交AC于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=10,BD=8,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•黔东南州)如图,以△ABC的边BC为直径作⊙O分别交AB,AC于点F.点E,AD⊥BC于D,AD交于⊙O于M,交BE于H.
求证:DM2=DH•DA.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以△ABC的边AB为直径的⊙O交AC于点D,弦DE∥AB,∠C=∠BAF
(1)求证:BC为⊙O的切线;
(2)若⊙O的半径为5,AD=2
5
,求DE的长.

查看答案和解析>>

同步练习册答案