精英家教网 > 初中数学 > 题目详情

已知△ABC中,AB=AC,∠A=50°,⊙O是△ABC的外接圆,D是优弧BC上任一点(不与A、B、C重合),则∠ADB的度数是


  1. A.
    50°
  2. B.
    65°
  3. C.
    65°或50°
  4. D.
    115°或65°
D
分析:根据已知画出图形,得出∠ABC=∠ACB=65°,再利用圆内接四边形的性质得出即可.
解答:解:∵△ABC中,AB=AC,∠A=50°,
∴∠ABC=∠ACB=65°,
∴∠C=∠D′,∠C+∠ADB=180°,
∴∠ADB=180°-65°=115°,
∠AD′B=65°,
故选:D.
点评:此题主要考查了等腰三角形的性质以及圆内接四边形的性质,根据已知得出,∠C=∠D′,∠C+∠ADB=180°是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.
∵AD平分∠BAC,
∴∠BAD=∠
 
(角平分线的定义).
在△ABD和△ACD中,
(               )
(               )
(               )

∴△ABD≌△ACD
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,AB=AC,AD为BC边上的中线,BE为AC边上的高,
(1)在图中作出中线AD(要求用尺规作图,保留作图痕迹,不写作法与证明);
(2)设AD,BE交于点F,若∠ABC=70°,求∠DFB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠
BAD
BAD
=∠
CAD
CAD
(角平分线的定义)
在△ABD和△ACD中

∴△ABD≌△ACD
SAS
SAS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知△ABC中,AB=17cm,BC=30cm,BC边上的中线AD=8cm.求证:△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案