Èçͼ£¬µãA1£¬A2£¬A3£¬¡­£¬An-1£¬AnΪxÖáµÄÕý°ëÖáÉϵĵ㣬OA1=A1A2=A2A3=¡­=An-1An=1£¬·Ö±ðÒÔA1£¬A2£¬A3£¬¡­£¬An-1£¬AnΪֱ½Ç¶¥µã×÷Rt¡÷OA1B1£¬Rt¡÷A1A2B2£¬Rt¡÷A2A3B3£¬¡­£¬Rt¡÷An-1AnBn£¬ËüÃǵÄÃæ»ý·Ö±ð¼ÇΪS1£¬S2£¬S3£¬¡­£¬Sn£¬ÇÒS1=1£»Ë«ÇúÏßÇ¡ºÃ¾­¹ýµãB1£¬B2£¬B3£¬¡­£¬Bn£®
£¨1£©ÇóË«ÇúÏߺÍÖ±ÏßA1B2¶ÔÓ¦µÄº¯Êý½âÎöʽ£»
£¨2£©Ìî¿Õ£ºS10=
 
£¬Sn=
 
£»
£¨3£©ÈôÖ±ÏßB1O½»Ë«ÇúÏßÓÚµãP£¬ÔÚÕâϵÁÐÖ±ÏߣºA1B2£¬A2B3£¬¡­£¬An-1BnÖдæÔÚ¾­¹ýµãPµÄÖ±ÏßÂð£¿Èô´æÔÚ£¬Ö±½ÓÕÒ³öÀ´£®
¾«Ó¢¼Ò½ÌÍø
·ÖÎö£º£¨1£©ÈôÒªÇóË«ÇúÏß½âÎöʽ£¬Ö»ÐèÇó³öË«ÇúÏßÉϵÄÒ»¸öµãÓÐ×ø±ê¼´¿É£¬ÓÉÌâÒ⣬¿É´ÓBµãÈëÊÖ£»
£¨2£©ÔÚµÚn¸öÈý½ÇÐÎÖУ¬Anµã×ø±êΪ£¨n£¬0£©£®Bnºá×ø±êΪn£¬´úÈ루1£©ÖÐÇóµÃµÄ½âÎöʽ¿ÉµÃ³öBnµã×ø±ê£¬´Ó¶øÇó³öABn´úRt¡÷An-1AnBnÃæ»ý¹«Ê½Sn=
1
2
An-1An¡ÁAnBn
Çó³öµÚn¸öÈý½ÇÐεÄÃæ»ý±í´ïʽ£¬ÔÙ´úÈënµÄÖµ¼´¿ÉÇóµÃËùÒªÇóµÃµÄÈý½ÇÐεÄÃæ»ý£®
£¨3£©Çó³öPµã×ø±ê£¬ÔÙ½â³öÖ±ÏßAn-1BnµÄͨʽ£¬´úÈëPµã×ø±êÑéË㣮
½â´ð£º½â£º£¨1£©ÓÉÓÚA1£¨1£¬0£©S1=
1
2
OA1¡ÁA1B1=1

¡àA1B1=2
¼´£ºB1£¨1£¬2£©
¢ÙÉèË«ÇúÏßΪ£ºy=
k1
x
£¬´úÈëB1£¨1£¬2£©µÃ£ºk1=2
¡àË«ÇúÏßΪ£ºy=
2
x


¢Ú¡ßA2×ø±êΪ£¨2£¬0£©
¡àB2ºá×ø±êΪ2£¬´úÈëË«ÇúÏß½âÎöʽµÃB2×ø±êΪ£º£¨2£¬1£©
ÉèÖ±ÏßA1B2½âÎöʽΪ£ºy=k2x+b
´úÈëA1£¨1£¬0£©ºÍB2£¨2£¬1£©µÃ
k2+b=0
2k2+b=1
½âµÃ£º
k2=1
b=-1

¡àÖ±ÏßA1B2¶ÔÓ¦µÄº¯Êý½âÎöʽΪy=x-1£»

£¨2£©ÓÉÓÚAn×ø±êΪ£¨n£¬0£©¼´Bnºá×øΪn
½«Bnºá×ø±ê´úÈëË«ÇúÏß½âÎöʽÖеÃ
Bn(n£¬
2
n
)

Sn=
1
2
An-1An¡ÁAnBn
=
1
2
¡Á1¡Á
2
n
=
1
n

¡àS10=
1
10


£¨3£©OB1Ö±Ïß·½³ÌΪy=2x
ÓÉ
y=2x
y=
2
x
µÃ
x1=1
y1=2
£¬
x2=-1
y2=-2
£¬
¡àPµã×ø±êΪ£º£¨-1£¬-2£©
ÓÉAn-1£¨n-1£¬0£©£¬Bn£¨n£¬
2
n
£©¿ÉµÃÖ±ÏßAn-1Bn¶ÔÓ¦µÄº¯Êý½âÎöʽΪ£º
y=
2
n
x+
2
n
-2

¼´£ºy=
2
n
(x+1)-2

ºã¹ýµã£¨-1£¬-2£©£¬
¡àÖ±ÏßA1B2£¬A2B3£¬An-1Bn¶¼¾­¹ýµãP£¨-1£¬-2£©£®
µãÆÀ£º´ËÌ⿼²éÁËË«ÇúÏßÓëÖ±ÏßµÄÔËÓ㬽«Ö±ÏßÓëË«ÇúÏß½âÎöʽÁªÁ¢¿ÉÇó³ö½»µã×ø±ê£®½âÌâʱÕÒ³ö¹æÂÉÇó³öͨʽѰÕÒºÏÀíµÄ½âÌâ·½·¨½«Êǽâ¾ö´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬µãA1£¬A2£¬A3£¬A4ÔÚÉäÏßOAÉÏ£¬µãB1£¬B2£¬B3ÔÚÉäÏßOBÉÏ£¬ÇÒA1B1¡ÎA2B2¡ÎA3B3£¬A2B1¡ÎA3B2¡ÎA4B3£®Èô¡÷A2B1B2£¬¡÷A3B2B3µÄÃæ»ý·Ö±ðΪ1£¬4£¬ÔòͼÖÐÈý¸öÒõÓ°Èý½ÇÐÎÃæ»ýÖ®ºÍΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬µãA1¡¢A2£¬B1¡¢B2£¬C1¡¢C2·Ö±ðÊÇ¡÷ABCµÄ±ßBC¡¢CA¡¢ABµÄÈýµÈ·Öµã£¬Èô¡÷ABCµÄÖܳ¤ÎªL£¬ÔòÁù±ßÐÎA1A2B1B2C1C2µÄÖܳ¤Îª£¨¡¡¡¡£©
A¡¢
1
3
L
B¡¢3L
C¡¢2L
D¡¢
2
3
L

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬µãA1¡¢A2¡¢A3¡¢¡­¡¢AnÔÚÅ×ÎïÏßy=x2ͼÏóµãB1¡¢B2¡¢B3¡¢¡­¡¢BnÔÚyÖáÉÏ£¬Èô¡÷A1B0B1¡¢¡÷A2B1B2¡¢¡­¡¢¡÷AnBn-1Bn¶¼ÎªµÈÑüÖ±½ÇÈý½ÇÐΣ¨µãB0ÊÇ×ø±êÔ­µã£©£¬Ôò¡÷A2012B2011B2012µÄÑü³¤=
2012
2
2012
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬µãA1¡¢A2¡¢A3¡¢¡­¡¢AnÔÚÅ×ÎïÏßy=x2ͼÏóÉÏ£¬µãB1¡¢B2¡¢B3¡¢¡­¡¢BnÔÚyÖáÉÏ£¬Èô¡÷A1B0B1¡¢¡÷A2B1B2¡¢¡­¡¢¡÷AnBn-1Bn¶¼ÎªµÈÑüÖ±½ÇÈý½ÇÐΣ¨µãB0ÊÇ×ø±êÔ­µã£©£¬Ôò¡÷A2013B2012B2013µÄÑü³¤=
2013
2
2013
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÄϾ©¶þÄ££©Èçͼ£¬µãA1¡¢A2¡¢A3¡¢A4¡¢A5ÔÚ¡ÑOÉÏ£¬ÇÒ
A1A2
=
A2A3
=
A3A4
=
A4A5
=
A5A1
£¬B¡¢C·Ö±ðÊÇA1A2¡¢A2A3ÉÏÁ½µã£¬A1B=A2C£¬A5BÓëA1CÏཻÓÚµãD£¬Ôò¡ÏA5DCµÄ¶ÈÊýΪ
108¡ã
108¡ã
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸