精英家教网 > 初中数学 > 题目详情
(1)在△ABC中,AB=m2-n2,AC=2mn,BCm2+n2=(m>n>0).
求证:△ABC是直角三角形;
(2)已知:如图,在梯形ABCD中,AD∥BC,点E、F分别是AD、BC的中点,若AB=m2-n2,CD=2mn,AD=n2,BC=m2+2n2,(m>n>0).求证:EF=
12
(m2+n2).
分析:(1)根据题意可得出AB、AC、BC的表达式,然后分别平方可得出BC2=AB2+AC2,从而利用勾股定理的逆定理即可作出证明.
(2)过点E作EG∥AB交BC于点G,过点E作EH∥CD交BC于点H,判断出四边形ABGE是平行四边形,继而证明△EGH是直角三角形,结合条件得出点F是Rt△EGH的斜边GH上的中线,从而可证得结论.
解答:证明:(1)∵AB=m2-n2,AC=2mn,BC=m2+n2(m>n>0),
∴AB2=m4-2m2n2+n4,AC2=4m2n2,BC2=m4+2m2n2+n4
∴BC2=AB2+AC2
∴△ABC是直角三角形.

(2)过点E作EG∥AB交BC于点G,过点E作EH∥CD交BC于点H,
∵EG∥AB  AD∥BC
∴四边形ABGE是平行四边形,
∴AE=BG,EG=AB,
同理可证ED=HC,EH=CD,
∴AD=BG+HC,
∵AB=m2-n2,CD=2mn,AD=n2,BC=m2+2n2
∴EG=m2-n2,EH=2mn,GH=m2+n2
∴EG2+EH2=GH2
∴△EGH是直角三角形,
又点E、F分别是AD、BC的中点,
∴AE=DE,BF=CF,
∴BG=CH,
∴BF-BG=CF-FH,
∴GF=HF,
即点F是Rt△EGH的斜边GH上的中线,
∴EF=
1
2
GH,
∴EF=
1
2
(m2+n2).
点评:此题考查了梯形、勾股定理的逆定理、平行四边形的判定与性质,综合性较强,有一定难度,解答本题的关键是熟练运用勾股定理的逆定理及平行四边形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案