精英家教网 > 初中数学 > 题目详情

如图所示中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点.甲虫沿路线爬行,乙虫沿ACB路线爬行,则下列结论中正确的是

[  ]

A.甲先到B点
B.乙先到B点
C.甲、乙同时到B点
D.无法确定
答案:C
解析:

如图:设大半圆半径为R,小圆半径为r1,r2,r3,r4且R=r1+r2+r3+r4因为,,所以甲,乙两小虫同时到达B点,故选C.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,设矩形的边长AB=y米,BC=x米.(注:取 π=3.14)
(1)试用含x的代数式表示y;
(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428 元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;
①设该工程的总造价为W元,求W关于x的函数关系式;
②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由;
③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能精英家教网,请说明理由.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628 米,矩形的边长AB=y米,BC=x米, (注:取= 3.14 )  
(1)试用含x的代数式表示y;    
(2)现计划在矩形ABCD区域土种植花草和铺设鹅卵石等,平均每平方米造价为428元. 在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为 400元;
①设该工程的总造价为W元,求 W关于x 的函数关系式;
②若该工程政府投入1 千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由?    
③若该工程在政府投入1 千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边 BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.    

查看答案和解析>>

科目:初中数学 来源:重庆市中考真题 题型:解答题

在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628m,设矩形的边长AB=y(m),BC=x(m)。(注:取π=3.14)

(1)试用含x的代数式表示y;
(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;
①设该工程的总造价为W元,求W关于x的函数关系;
②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由?
③若该工程政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边长BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2012年浙江省杭州市中考数学模拟试卷(48)(解析版) 题型:解答题

在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,设矩形的边长AB=y米,BC=x米.(注:取 π=3.14)
(1)试用含x的代数式表示y;
(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428 元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;
①设该工程的总造价为W元,求W关于x的函数关系式;
②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由;
③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.

查看答案和解析>>

同步练习册答案