【题目】如图,在口ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.
(1)求证:△ABF≌△EDA;
(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.
【答案】(1)证明见解析;(2)证明见解析.
【解析】(1)证明AB=DE,FB=AD,∠ABF=∠ADE即可解决问题;
(2)只要证明FB⊥AD即可解决问题.
详(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,∠ABC=∠ADC,
∵BC=BF,CD=DE,
∴BF=AD,AB=DE,
∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,
∴∠ADE=∠ABF,
在△ABF与△EDA中,
∵AB=DE,∠ABF=∠ADE,BF=AD
∴△ABF≌△EDA.
(2)证明:延长FB交AD于H.
∵AE⊥AF,
∴∠EAF=90°,
∵△ABF≌△EDA,
∴∠EAD=∠AFB,
∵∠EAD+∠FAH=90°,
∴∠FAH+∠AFB=90°,
∴∠AHF=90°,即FB⊥AD,
∵AD∥BC,
∴FB⊥BC.
科目:初中数学 来源: 题型:
【题目】如图,点O为矩形ABCD的对称中心,AB=5cm,BC=6cm,点E.F.G分别从A.B.C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E.F.G运动的时间为t(单位:s).
(1)当t等于多少s时,四边形EBFB′为正方形;
(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;
(3)是否存在实数t,使得点B’与点O重合?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的2倍,则这个矩形是给定矩形的“加倍”矩形.如图,矩形是矩形的“加倍”矩形.
解决问题:
(1)当矩形的长和宽分别为3,2时,它是否存在“加倍”矩形?若存在,求出“加倍”矩形的长与宽,若不存在,请说明理由.
(2)边长为的正方形存在“加倍”正方形吗?请做出判断,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠BAC=90°,∠ABC=45°,点D为AB延长线上一点,连接CD,∠AMC=90°,AM交BC于点N,∠APB=90°,AP交CD于点Q.
(1)求证:AN=CQ;
(2)如图,点E在BA的延长线上,且AD=BE,连接EN并延长交CD于点F,求证:DQ=EN;
(3)在(2)的条件下,当3AE=2AB时,请直接写出EN:FN的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,CD⊥AB,
(1)图①中共有 对相似三角形,写出来分别为 (不需证明);
(2)已知AB=10,AC=8,请你求出CD的长;
(3)在(2)的情况下,如果以AB为x轴,CD为y轴,点D为坐标原点O,建立直角坐标系(如图②),若点P从点C出发,以每秒1个单位的速度沿线段CB运动,点Q从点B出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t秒,是否存在点P,使以点B,P,Q为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线分别交轴、轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC 轴于点C,交抛物线于点D.
(1)若抛物线的解析式为,设其顶点为M,其对称轴交AB于点N.
①求点M、N的坐标;
②是否存在点P,使四边形MNPD为菱形?并说明理由;
(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥轴于点C,交的图象于点A,PC⊥轴于点D,交的图象于点B. 当点P在的图象上运动时,以下结论:
①
②的值不会发生变化
③PA与PB始终相等
④当点A是PC的中点时,点B一定是PD的中点.
其中一定不正确的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB与x轴、y轴分别交于点A(3,0)、B,动点P从原点出发,以每秒1个单位长度的速度向点A运动,到达点A立即停止.点C(﹣1,0),以P为直角顶点,PC为直角边向x轴上方作等腰Rt△PQC,△PQC与△AOB重叠部分面积为S,点P运动时间为t(秒),S关于t的函数图象如图2所示(其中0≤t≤,≤t≤3时,函数解析式不同).
(1)当t=时,S的值为 ;
(2)求直线AB的解析式;
(3)求S关于t的解析式,并写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com