精英家教网 > 初中数学 > 题目详情

【题目】某校为更好的开展“春季趣味运动会”活动,随机在各年级抽查了部分学生,了解他们最喜爱的趣味运动项目类型(跳绳、实心球、50m、拔河共四类),并将统计结果绘制成如下不完整的频数分布表(如图所示)

根据以上信息回答下列问题:

最喜爱的趣味运动项目类型频数分布表:

 项目类型

 频数

频率 

 跳绳

 25

 a

 实心球

 20

 

 50m

 b

 0.4

 拔河

 0.15

(1)直接写出a=   ,b=   

(2)将图中的扇形统计图补充完整(注明项目、百分比);

(3)若全校共有学生1200名,估计该校最喜爱50m和拔河的学生共约有多少人?

【答案】(1)0.25、40;(2)见解析(3)660

【解析】试题分析:1)首先根据跳绳的频率是a=25%=0.25,有25人,据此即可求得总人数,然后利用除以总人数即可求得b的值;
2)用360°乘以各自的频率即可求出圆心角,即可解答;
3)用总人数1200乘以喜爱50m和拔河的学生频率即可求解.

试题解析:(1)由扇形图知a=25%=0.25

∵总人数为25÷0.25=100(人),

b=100×0.4=40

故答案为:0.2540

2)如图,

实心球所占百分比为

50m所占百分比为0.4=40%,拔河所占百分比为0.15=15%

补全扇形图如下:

31200×0.4+0.15=660(人),

答:全校共有学生1200名,估计该校最喜爱50m和拔河的学生的学生大约有660人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图已知点A(1,a是反比例函数的图象上一点直线与反比例函数的图象的交点为点BDB(3,﹣1),

(1)求反比例函数的解析式

(2)求点D坐标并直接写出y1y2x的取值范围

(3)动点Px,0)x轴的正半轴上运动当线段PA与线段PB之差达到最大时求点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:结果精确到0.1小时)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】重庆八中宏帆中学某年级为了选拔参加全国汉字听写大赛重庆赛区比赛的队员,特在年级举行全体学生的汉字听写比赛,首轮每位学生听写汉字39个.现随机抽取了部分学生的听写结果,绘制成如图的图表.

组别

正确字数x

人数

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

n

根据以上信息完成下列问题:

(1)统计表中的m=   ,n=   ,并补全条形统计图;

(2)已知该年级共有1500名学生,如果听写正确的字的个数不少于24个则进入第二轮的比赛,请你估计本次听写比赛顺利进入第二轮的学生人数;

(3)第二轮比赛过后,为了更有针对性地应对本次大赛,该年级决定从没有担任班主任的5个语文老师(其中3个男老师2个女老师)中随机抽取两个老师对胜出的学生进行培训、辅导.请用树状图或列表法求出抽取的两个老师恰好都是男老师的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.

(1)求证:CBG≌△CDG;

(2)求HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;

(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,放置的是一副斜边相等的直角三角板,其中ABBC,连接BD交公共的斜边ACO点.

(1)证明:BD平分∠ADC

(2)求∠COD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】满足下列条件的△ABC不是直角三角形的是()

A. BC=1,AC=2,AB=

B. BC=1,AC=2,AB=

C. BC:AC:AB=3:4:5

D. ∠A:∠B:∠C=3:4:5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点EEF∥BCABF,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经销水杯,电热水壶两种商品,水杯每个进价15元,售价20元;电热水壶每个进价35元,售价45元.

(1)若该商场同时购进水杯、电热水壶共100件,恰好用去2700元,求能购进水杯、电热水壶各多少个?

(2)商场要求小明用1050元的钱(必须全部用完)采购水杯、电热水壶(或其中一种商品),且还要求总利润不少于340元(假设商品全部卖完),请你确定所有的进货方案.

查看答案和解析>>

同步练习册答案