精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于_____

【答案】50+72

【解析】

将线段AP绕点A顺时针旋转60°得到线段AM,连接PM,想办法证明∠APH=30°,利用勾股定理求出AB的平方即可解决问题.

将线段AP绕点A顺时针旋转60°得到线段AM,连接PM,作AHBPH.

∵四边形ABCD是菱形,

AB=BC,

∵∠ABC=60°,

∴△ABC是等边三角形,

AM=AP,MAP=60°,

∴△AMP是等边三角形,

∵∠MAP=BAC,

∴∠MAB=PAC,

∴△MAB≌△PAC,

BM=PC=10,

PM2+PB2=100,BM2=100,

PM2+PB2=BM2

∴∠MPB=90°,

∵∠APM=60°,

∴∠APB=150°,APH=30°,

AH=PA=3,PH=,BH=8+

AB2=AH2+BH2=100+48

∴菱形ABCD的面积=2ABC的面积=×AB2=50+72,

故答案为:50+72.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、DBFa于点F,DEa于点E,若DE=8,BF=5,则EF的长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题
(1)【问题提出】
如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF
试证明:AB=DB+AF

(2)【类比探究】
如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由

(3)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的两个实数根,且x1、x2满足不等式x1x2+2(x1+x2)>0,求实数m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图1,在以O为原点的平面直角坐标系中,抛物线y= x2+bx+c与x轴交于A、B两点,与y轴交于点C(0,﹣1),连接AC,AO=2CO,直线l过点G(0,t)且平行于x轴,t<﹣1,

(1)求抛物线对应的二次函数的解析式;
(2)若D为抛物线y= x2+bx+c上一动点,是否存在直线l使得点D到直线l的距离与OD的长恒相等?若存在,求出此时t的值;
(3)如图2,若E、F为上述抛物线上的两个动点,且EF=8,线段EF的中点为M,求点M纵坐标的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】进入冬季,我市空气质量下降,多次出现雾霾天气商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务

1试确定周销售量y与售价x元/包之间的函数关系式;

2试确定商场每周销售这种防尘口罩所获得的利润w与售价x元/包之间的函数关系式,并直接写出售价x的范围;

3当售价x元/包定为多少元时,商场每周销售这种防尘口罩所获得的利润w最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 与x轴相交于点A、B,与y轴相交于点C,抛物线对称轴与x轴相交于点M,

(1)求△ABC的面积;
(2)若p是x轴上方的抛物线上的一个动点,求点P到直线BC的距离的最大值;
(3)若点P在抛物线上运动(点P异于点A),当∠PCB=∠BCA时,求直线PC的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A﹣2,2,B﹣3,﹣2

1若点D与点A关于y轴对称,则点D的坐标为

2将点B先向右平移5个单位再向上平移1个单位得到点C,则点C的坐标为

3A,B,C,D组成的四边形ABCD的面积。

查看答案和解析>>

同步练习册答案