精英家教网 > 初中数学 > 题目详情

为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

(1)w=-2x2+120x-1600;(2)30,200;(3)25.

解析试题分析:(1)根据销售额=销售量×销售单价,列出函数关系式;
(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值;
(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.
试题解析:(1)由题意得出:w=(x-20)?y=(x-20)(-2x+80)=-2x2+120x-1600,
故w与x的函数关系式为:w=-2x2+120x-1600;
(2)w=-2x2+120x-1600=-2(x-30)2+200,
∵-2<0,
∴当x=30时,w有最大值.w最大值为200.
答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.
(3)当w=150时,可得方程-2(x-30)2+200=150.
解得 x1=25,x2=35.     
∵35>28,
∴x2=35不符合题意,应舍去.   
答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
考点: 二次函数的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知:二次函数y=x2-4x+3.
(1)将y=x2-4x+3化成的形式;
(2)求出该二次函数图象的对称轴和顶点坐标;
(3)当x取何值时,y<0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.
(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式.
(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.(假设年租金的增加额均为5000元的整数倍)该公司要为租出的商铺每间每年交各种费用2万元,未租出的商铺每间每年交各种费用1万元.
(1)当每间商铺的年租金定为12万元时,能租出多少间?年收益多少万元?
(2)当每间商铺的年租金定为多少万元时,该公司的年收益最大,最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,),线段AB的垂直平分线交x轴于点C,交AB于点D.

(1)试确定这个一次函数解析式;(3分)
(2)求过A、B、C三点的抛物线的函数关系式;(6分)
(3)请你利用所求抛物线的图像回答:当x取何值时,抛物线中的部分图像落在x轴的上方? (3分)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在关于x,y的二元一次方程组中.
(1)若a=3.求方程组的解;
(2)若S=a(3x+y),当a为何值时,S有最值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线轴相交于点(﹣1,0)、(3,0),与轴相交于点,点为线段上的动点(不与重合),过点垂直于轴的直线与抛物线及线段分别交于点,点轴正半轴上,=2,连接

(1)求抛物线的解析式;
(2)当四边形是平行四边形时,求点的坐标;
(3)过点的直线将(2)中的平行四边形分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,曲线是函数在第一象限内的图象,抛物线是函数的图象.点)在曲线上,且都是整数.

(1)求出所有的点
(2)在中任取两点作直线,求所有不同直线的条数
(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经
过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2<0)的顶点.

(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求的值.

查看答案和解析>>

同步练习册答案