精英家教网 > 初中数学 > 题目详情
在正方形ABCDBC的延长线上取一点E,使CE=ACAECDF,则ÐAFC的度数为________.

 

答案:
解析:

112.5°

 


提示:

利用正方形的性质

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点E在正方形ABCD的边AB上,若EB的长为1,EC的长为2,那么正方形ABCD的面积是(  )
A、
3
B、
5
C、3
D、5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形EFGH的四个顶点在正方形ABCD的边上,若AB=a,EF=b,则△AEF的内切圆半径为
 
.(用含有a、b的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据
SAS
SAS
,易证△AFG≌
△AEF
△AEF
,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系
∠B+∠D=180°
∠B+∠D=180°
时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD的边BC的延长线上取一点E,使CE=AC,AE交CD于点F.那么,∠ACB=
45
45
°,∠E=
22.5
22.5
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,过正方形ABCD内部任意一点O作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,证明:EF=GH;
(2)当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?图2是其中一种情形,试就该图形对你的结论加以证明.

查看答案和解析>>

同步练习册答案