精英家教网 > 初中数学 > 题目详情
20、如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.
(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);
(2)求证:BC是过A,D,C三点的圆的切线.
分析:(1)由已知得到△ACD是直角三角形,那么过A,D,C三点作⊙O,根据圆周角是直角所对的弦是直径得,AD为⊙O的直径,所以作AD的中点O即为圆心,再以点O为圆心,OA长为半径即可作出⊙O.
(2)先连接OC,已知已知在等腰△ABC中,∠A=∠B=30°,能求出∠ACB=120°,在⊙O中OA=OC,得到,∠ACO=∠A=30°,
那么∠BCO=∠ACB-∠ACO=120°-30°=90°,从而推出BC是过A,D,C三点的圆的切线.
解答:解:(1)作出圆心O,
以点O为圆心,OA长为半径作圆;

(2)证明:∵CD⊥AC,∴∠ACD=90°.
∴AD是⊙O的直径
连接OC,∵∠A=∠B=30°,
∴∠ACB=120°,又∵OA=OC,
∴∠ACO=∠A=30°,
∴∠BCO=∠ACB-∠ACO=120°-30°=90°.
∴BC⊥OC,
∴BC是⊙O的切线.
点评:此题考查的是等腰三角形的性质和切线的判定及尺规作图,关键是首先确定AD为直径,再作圆.根据已知推出BC⊥OC.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,已知在等腰三角形ABC中,AB=AC,AE∥BC.求证:AE平分∠DAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在等腰△ABC中,如果AB=AC,∠A=40°,DE是AB的垂直平分线,那么∠DBC=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,已知在等腰直角三角形ABC中,∠BAC=90°,E为AB上任意一点,以CE为斜边作等腰直角三角形CDE,连接AD,那么AD∥BC吗?(直接回答,不用过程)
如图②,若三角形ABC为任意等腰三角形AB=AC,E为AB上任意一点,△ABC∽△DEC.连接AD,那么AD∥BC吗?若平行,请证明.若不平行,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在等腰△ABC中,AB=AC=13,BC=10,求底角∠B的三角函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在等腰梯形ABCD中,AD∥BC,PA=PD,问PB与PC相等吗?为什么?

查看答案和解析>>

同步练习册答案