【题目】已知如图,点A、点B在直线l异侧,以点A为圆心,AB长为半径作弧交直线l于C、D两点.分别以C、D为圆心,AB长为半径作弧,两弧在l下方交于点E,连结AE.
(1)根据题意,利用直尺和圆规补全图形;
(2)证明:l垂直平分AE.
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=5,AD=12,点E是BC上一点,将△ABE沿AE折叠,使点B落在点F处,连接CF,当△CEF为直角三角形时,CF的长为________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一个直角三角形纸片ABO放置在平面直角坐标系中,点A(,0),B(0,1),O(0,0).
(1)点P为边OA上一点(点P不与A,O重合),沿BP将纸片折叠得A的对应点A′.边BA′与x轴交于点Q.
①如图1,当点A′刚好落在y轴上时,求点A′的坐标.
②如图2,当A′P⊥OA,若线段OQ在x轴上移动得到线段O′Q′(线段OQ平移时A′不动),当△A′O′Q′周长最小时,求OO′的长度.
(2)如图3,若点P为边AB上一点(点P不与A,B重合),沿OP将纸片折叠得A的对应点A″,当∠BPA″=30°时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把满足下面条件的△ABC称为“黄金三角形”:
①△ABC是等腰三角形;②在三角形的某条边上存在不与顶点重合的点P,使得P与P所在边的对角顶点连线把△ABC分成两个不全等的等腰三角形.
(1)△ABC中,AB=AC,∠A:∠C=1:2,可证△ABC是“黄金三角形”,此时∠A的度数为_________.
(2)△ABC中,AB=AC, ∠A为钝角.若△ABC为“黄金三角形”,则∠A的度数为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线()过E,A′两点.
(1)填空:∠AOB= °,用m表示点A′的坐标:A′( , );
(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;
(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
①求a,b,m满足的关系式;
②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某游泳馆的剖面图,运动员小亮站在米高的跳台上(即),目测游泳馆远处墙壁的最高点的仰角为,已知,游泳馆的馆顶是一个弓形,且弓形高是.求该游泳馆的馆顶离地面的最大高度.(小亮的身高可忽略不计,结果精确到米).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分的面积为( )
A. 1+ B. 1+ C. 2sin20°+ D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点、、在轴上,且,分别过点、、作轴的平行线,与反比例函数的图象分别交于点、、,分别过点、、作轴的平行线,分别与轴交于点、、,连接、、,若图中三个阴影部分的面积之和为,则________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com