精英家教网 > 初中数学 > 题目详情
如图1,过△ABC顶点A作BC边上的高AD和中线AE,点D是垂足,点E是BC中点,规定λA=
DEBE
.特别地,当D、E重合时,规定λA=0.另外对λB、λC也作类似规定.

(1)①当△ABC中,AB=AC时,则λA=
0
0
;②当△ABC中,λAB=0时,则△ABC的形状是
等边三角形
等边三角形

(2)如图2,在Rt△ABC中,∠A=30°,求λA和λC的值;
(3)如图3,正方形网格中,格点△ABC的λA=
2
2

(4)判断下列三种说法的正误(正确的打“√”错误的打“×”)
①若△ABC中λA<1,则△ABC为锐角三角形
×
×

②若△ABC中λA=1,则△ABC为直角三角形

③若△ABC中λA>1,则△ABC为钝角三角形

(5)通过本题解答,同学们应该有这样的认识:一个无论多么陌生、多么综合的问题,其实都来自于书本已学的基础知识.因此,我们今后应重视基础知识的学习;同时在解决问题时或者解决问题后,应该思考该问题的本质和目的:①巩固哪些基础知识;②培养我们哪些方面能力;③向我们渗透哪些数学思想.本题之所以是一道综合题,就是因为涉及到的知识点多、面广.下面就请你谈谈本题中所用到的、已学过的性质、定理、公理或判定等.(至少列举两条)
分析:(1)①根据题意画出图形,然后根据λA定义与等腰三角形三线合一的性质,即可求得λA=0,②根据λA定义与线段垂直平分线的性质,即可证得△ABC的形状是等边三角形;
(2)根据直角三角形斜边上的中线等于斜边的一半与特殊角的三角函数的值,即可求得答案;
(3)观察图形,根据λA的定义,即可求得λA的值;
(4)根据λA的定义,即可判定①②③的正确性;
(5)用到的定理:①等腰三角形中三线合一;②直角三角形斜边上的中线等于斜边的一半;③在直角三角形中,30°角所对的直角边等于斜边的一半等.
解答: 解:(1)①如图:
∵AB=AC,
∴AD是BC的高,也是BC的中线,
即D与E重合,
∴λA=
DE
BE
=0;

②当△ABC中,λA=0时,
即DE=0,
∴AD是BC的高,也是BC的中线,
即AD是线段BC的垂直平分线,
∴AB=AC,
∵λB=0,
同理:BC=BA,
∴AB=BC=AC,
∴△ABC的形状是等边三角形;

(2)如图,作BC边上的中线AD,过点C作CE⊥AB于E,作AB边上的中线CF,又AC⊥DC,
∴λA=
CD
BD
=1,
∵∠ACB=90°,
∴AF=CF,
∴∠ACF=∠CAF=30°,
∴∠CFE=60°,
∴λC=
EF
AF
=
EF
CF
=cos60°=
1
2


(3)如图:λA=
DE
BE
=2;

(4)①×,②√,③√.

(5)用到的定理:①等腰三角形中三线合一;②直角三角形斜边上的中线等于斜边的一半;③在直角三角形中,30°角所对的直角边等于斜边的一半等.
故答案为:(1)0,等边三角形;(3)2;(4)①×,②√,③√.
点评:此题考查了等腰三角形的判定与性质、直角三角形的判定与性质以及特殊角的三角函数问题.此题综合性较强,属于阅读性与新定义性题目,题目难度较大,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,已知:△ABC的三个顶点的坐标分别是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直线的函数解析式;
(2)在△AOB内可以作一个正方形CDEF,使它的三个顶点分别落在边AO、AB上,E、F两个顶点落在OB上,请求出这个正方形四个顶眯的坐标,并在图中画出这个正方形;
(3)连接OC,在线段OC上任取一点P,过P作与x轴、y轴的不行线与OA、OB分别交于M、N两点,过M作OB边的垂线与OB交于H;你有什么发现?请写出来,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

6、把等腰直角三角形ABC,按如图所示立在桌上,顶点A顶着桌面,若另两个顶点距离桌面5cm和3cm,则过另外两个顶点向桌面作垂线,则垂足之间的距离DE的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,半径为2的正三角形ABC的中心为O,过O与两个顶点画弧,求这三条弧所围成的阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知:△ABC的三个顶点的坐标分别是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直线的函数解析式;
(2)在△AOB内可以作一个正方形CDEF,使它的三个顶点分别落在边AO、AB上,E、F两个顶点落在OB上,请求出这个正方形四个顶眯的坐标,并在图中画出这个正方形;
(3)连接OC,在线段OC上任取一点P,过P作与x轴、y轴的不行线与OA、OB分别交于M、N两点,过M作OB边的垂线与OB交于H;你有什么发现?请写出来,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《一次函数》(07)(解析版) 题型:解答题

(2006•黔东南州)如图,在平面直角坐标系中,已知:△ABC的三个顶点的坐标分别是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直线的函数解析式;
(2)在△AOB内可以作一个正方形CDEF,使它的三个顶点分别落在边AO、AB上,E、F两个顶点落在OB上,请求出这个正方形四个顶眯的坐标,并在图中画出这个正方形;
(3)连接OC,在线段OC上任取一点P,过P作与x轴、y轴的不行线与OA、OB分别交于M、N两点,过M作OB边的垂线与OB交于H;你有什么发现?请写出来,并说明理由.

查看答案和解析>>

同步练习册答案