分析 (1)由AB∥DC,根据平行线的性质,可得∠A=∠C,∠B=∠D,又由AB=DC,即可利用ASA判定△AOB≌△COD,继而证得结论;
(2)由(1),可直接利用ASA判定△AOE≌△COF,继而证得OE=OF.
解答 解:(1)点O是AC、BD的中点;理由如下:
∵AB∥DC,
∴∠A=∠C,∠B=∠D,
在△AOB和△COD中,$\left\{\begin{array}{l}{∠A=∠C}&{\;}\\{AB=CD}&{\;}\\{∠B=∠D}&{\;}\end{array}\right.$,
∴△AOB≌△COD(ASA),
∴OA=OC,OB=OD,
即点O是AC、BD的中点;
(2)OE=OF;理由如下:
在△AOE和△COF中,$\left\{\begin{array}{l}{∠A=∠C}&{\;}\\{OA=OC}&{\;}\\{∠AOE=∠COF}&{\;}\end{array}\right.$,
∴△AOE≌△COF,
∴OE=OF.
点评 此题考查了全等三角形的判定与性质以及平行线的性质.注意利用平行线的性质,证得三角形全等是解此题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com