精英家教网 > 初中数学 > 题目详情
4.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是(  )
A.1:3B.1:4C.1:5D.1:25

分析 根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到$\frac{DE}{AC}$=$\frac{1}{5}$,$\frac{BE}{BC}$=$\frac{DE}{AC}$=$\frac{1}{5}$,结合图形得到$\frac{BE}{EC}$=$\frac{1}{4}$,得到答案.

解答 解:∵DE∥AC,
∴△DOE∽△COA,又S△DOE:S△COA=1:25,
∴$\frac{DE}{AC}$=$\frac{1}{5}$,
∵DE∥AC,
∴$\frac{BE}{BC}$=$\frac{DE}{AC}$=$\frac{1}{5}$,
∴$\frac{BE}{EC}$=$\frac{1}{4}$,
∴S△BDE与S△CDE的比是1:4,
故选:B.

点评 本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,抛物线y=ax2+bx-3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=-$\frac{1}{3}$x+1与y轴交于点D.
(1)求抛物线的解析式;
(2)证明:△DBO∽△EBC;
(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.计算(a-1)2正确的是(  )
A.a2-a+1B.a2-2a+1C.a2-2a-1D.a2-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.王经理到襄阳出差带回襄阳特产--孔明菜若干袋,分给朋友们品尝,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜33袋.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:

如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在?ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图(1),菱形ABCD对角线AC、BD的交点O是四边形EFGH对角线FH的中点,四个顶点A、B、C、D分别在四边形EFGH的边EF、FG、GH、HE上.
(1)求证:四边形EFGH是平行四边形;
(2)如图(2)若四边形EFGH是矩形,当AC与FH重合时,已知$\frac{AC}{BD}=2$,且菱形ABCD的面积是20,求矩形EFGH的长与宽.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列运算正确的是(  )
A.a+2a=2a2B.(-2ab22=4a2b4C.a6÷a3=a2D.(a-3)2=a2-9

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案