精英家教网 > 初中数学 > 题目详情

【题目】本题满分8如图,在ABC中,AB=ACDACABC的一个外角

实践与操作:

根据要求尺规作图,并在图中标明相应字母保留作图痕迹,不写作法

1DAC的平分线AM

2作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AECF

猜想并证明:

判断四边形AECF的形状并加以证明

【答案】(1)见解析;(2)见解析

【解析】

试题1根据题意画出图形即可;

2首先根据等腰三角形的性质与三角形内角与外角的性质证明ACB=FAC,进而可得AFBC;然后再根据线段的垂直平分线的性质可知:OA=OC, AOF=COE=90°,AE=EC,FA=FC,OA=OC, AOF=COE=90°CAM=ACB证明AOF≌△COE,即可得到AF=EC因此可由AFBC,AF=EC,得证四边形AECF是平行四边形最后可由ACEF得证结论:菱形

试题解析:1

2猜想:四边形AECF是菱形

证明:AB=AC AM平分CAD

∴∠B=ACBCAD=2CAM

∵∠CADABC的外角

∴∠CAD=B+ACB

∴∠CAD=2ACB

∴∠CAM=ACB

AFCE

EF垂直平分AC

OA=OC, AOF=COE=

AOF≌△COE

AF=CE

在四边形AECF中,AFCEAF=CE

四边形AECF是平行四边形

EFAC

四边形AECF是菱形

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=36°,∠C=76°ADAF分别是△ABC的角平分线和高,求∠DAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,若△ABC和△ADE为等边三角形,M,N分别是BE,CD的中点,

(1)求证:△AMN是等边三角形.

(2)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的菱形ABCD中,∠A60°,MAD边的中点,NAB边上的一动点,将△AMN沿MN所在直线翻折得到△AMN,连接AC,则AC长度的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。

(1)篮球和排球的单价各是多少元?

(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:

4ac<b2 方程ax2+bx+c=0的两个根是 3a+c>0 y>0时,x的取值范围是-1≤x<3 x<0时,yx增大而增大;

其中结论正确有__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1+∠2180°,∠A=∠CDA平分∠BDF

1AEFC会平行吗?说明理由;

2ADBC的位置关系如何?为什么?

3BC平分∠DBE吗?为什么.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AD是⊙O的直径,ADBC相交于点M,且BM=MC,过点DBC的平行线,分别与AB、AC的延长线相交于点E、F.

(1)求证:EF与⊙O相切;

2)若BC=2MD=,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明手上一张扇形纸片OAB.现要求在纸片上截一个正方形,使它的面积尽可能大.

小明的方案是:如图,在扇形纸片OAB内,画正方形CDEF,使CDOA上,FOB上;连接OE并延长交弧ABI,画IH∥EDOAHIJ∥OAOBJ,再画JG∥FCOAG

1)你认为小明画出的四边形GHIJ是正方形吗?如果是,请证明.如果不是,请说明理由.

2)如果扇形OAB的圆心角∠AOB=30°OA=6cm,小明截得的四边形GHIJ面积是多少(结果精确到0.1cm).

3)(1)中小明画出的四边形GHIJ如果是正方形,我们把它叫做扇形的内接正方形(四个顶点分别在扇形的半径和弧上).请你再画出一种不同于图(1)的扇形的内接正方形(保留画图痕迹,不要求证明)

查看答案和解析>>

同步练习册答案