精英家教网 > 初中数学 > 题目详情
如图,⊙O1和⊙O2内切于点P,且⊙O1过点O2,PB是⊙O2的直径,A为⊙O2上的点,连接AB,过O1作O1C⊥BA于C,连接CO2.已知PA=,PB=4.
(1)求证:BA是⊙O1的切线;
(2)求∠BCO2的正切值.

【答案】分析:(1)由题意得O1C⊥BA,证得O1C为半径即可;
(2)应把∠BCO2进行转移,转移到已求得的线段的比值.
解答:(1)证明:∵PB是⊙O2的直径,A为⊙O2上的点,
∴∠PAB=90°.
又∵O1C⊥BA,
∴△PAB∽△O1CB.
∵PA=,PB=4,
∴01C=1.
∴O1C是⊙O1的半径,
∵O1C⊥BA于C,
∴BA是⊙O1的切线.

(2)解:BC==
连接PC;
∵∠B=∠B,∠BCO2=∠BPC,
∴△BPC∽△BCO2
∴O2C:CP=BO2:BC=2:=tanBPC=tanBCO2
(在Rt△PCO2中,tanBPC=O2C:CP)
∴tanBCO2=
点评:证得直线为切线的条件:到圆心的距离等于半径,与半径垂直;要求的三角函数值需转移到已知的线段的比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知:如图,⊙O1和⊙O2相交于A、B两点,动点P在⊙O2上,且在⊙1外,直线PA、PB分别交⊙O1于C、D,问:⊙O1的弦CD的长是否随点P的运动而发生变化?如果发生变化,请你确定CD最长和最短时P的位置,如果不发生变化,请你给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1和⊙O2相交于A、B两点,过B点作⊙O1的切线交⊙O2于D点,连接DA并延精英家教网长⊙O1相交于C点,连接BC,过A点作AE∥BC与⊙O相交于E点,与BD相交于F点.
(1)求证:EF•BC=DE•AC;
(2)若AD=3,AC=1,AF=
3
,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O1和⊙O2相交于A、B两点,⊙O1的弦AC与⊙O2相切,P是
AmC
的中点,PA精英家教网、PB的延长线分别交⊙O2于点E、F,PB交AC于D.
(1)求证:PC∥AF;
(2)求证:AE•PC=BE•PD;
(3)若A是PE的中点,则⊙O1与⊙O2是否是等圆?若不是等圆,请说明理由;若是等圆,请给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图.⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点,求证:AB⊥AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2001•黄冈)已知,如图,⊙O1和⊙O2内切于点P,过点P的直线交⊙O1于点D,交⊙O2于点E;DA与⊙O2相切,切点为C.
(1)求证:PC平分∠APD;
(2)PE=3,PA=6,求PC的长.

查看答案和解析>>

同步练习册答案