精英家教网 > 初中数学 > 题目详情

【题目】中,分别为的高与中线.

1)如图1,求证:

2)如图2,点的延长线上,连接,若,求证:

3)在(2)的条件下,如图3,过点的平行线交于点,若,求的长.

【答案】1)详见解析;(2)详见解析;(38

【解析】

1)根据等腰三角形的性质求出,然后得出,即可证明结论;

2)过B点作CA的延长线于点P,首先证明

得出,然后根据垂直平分线的性质得出,则结论可证;

3)设,交,过点的平行线交的延长线于点,先根据平行线的性质和等量代换得出,然后证明,进而证明,则有 ,据此可求出,则利用即可求解.

1)∵

2)过B点作CA的延长线于点P

中,

垂直平分BC

3)设,交,过点的平行线交的延长线于点

中,

中,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.

(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;

(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为(  )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰ABC中,B=90°,AM是ABC的角平分线,过点M作MNAC于点N,EMF=135°.将EMF绕点M旋转,使EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:

(1)当EMF绕点M旋转到如图的位置时,求证:BE+CF=BM;

(2)当EMF绕点M旋转到如图,图的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;

(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=   ,CF=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:

(1)求点D的坐标;

(2)若反比例函数y=(k≠0)的图象经过点H,则k=   

(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的的个数有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知平行四边形ABCD,对角线ACBD相交于点OOBC=OCB

(1)求证:平行四边形ABCD是矩形;

(2)请添加一个条件使矩形ABCD为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的位置如图所示,(每个小方格都是边长为1个单位长度的正方形).

(1)画出△ABC关于y轴对称的△A1B1C1

(2)将△ABC绕着点A顺时针旋转180°,画出旋转后得到的△A2B2C2,并直接写出点B2,C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一元二次方程x2﹣4x+k=0有两个不相等的实数根

(1)求k的取值范围;

(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0x2+mx﹣1=0有一个相同的根,求此时m的值.

查看答案和解析>>

同步练习册答案