精英家教网 > 初中数学 > 题目详情

如图,六边形ABCDEF各内角相等,∠1=∠2=60°,AB与DE有怎样的位置关系?AD与BC有怎样的位置关系?为什么?

        

 

 

【答案】

AB∥DE,AD∥BC

【解析】此题主要考查了多边形内角和定理以及平行线的判定

根据已知得出六边形ABCDEF的每一个内角都相等120°,再利用∠1=∠2=60°,得出∠EDA=∠DAB=60°,即可得出AB∥DE,再利用已知得出∠2+∠C=180°,得出AD∥BC.

AB∥DE,AD∥BC,

∵六边形ABCDEF的内角都相等,

∴六边形ABCDEF的每一个内角都相等120°,

∴∠EDC=∠FAB=120°,

∵∠1=∠2=60°,

∴∠EDA=∠DAB=60°,

∴AB∥DE,

∵∠C=120°,∠2=60°,

∴∠2+∠C=180°,

∴AD∥BC.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图①:四边形ABCD为正方形,M、N分别是BC和CD中点,AM与BN交于点P,
(1)请你用几何变换的观点写出△BCN是△ABM经过什么几何变换得来的;
(2)观察图①,图中是否存在一个四边形,这个四边形的面积与△APB的面积相等?写出你的结论.(不必证明)
(3)如图②:六边形ABCDEF为正六边形,M、N分别是CD和DE的中点,AM与BN交于点P,问:你在(2)中所得的结论是否成立?若成立,写出结论并证明,若不成立请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD是由四个边长为l的正六边形所围住,则四边形ABCD的面积是(  )
A、
3
4
B、
3
2
C、1
D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:四边形ABCD中,AD∥BC,∠B=∠C,AD=a(a>0),BC=8,AD、BC间的距离为2
3
,有一边长为2的等边△EFG,在四边形ABCD内作任意运动,在运动过程中始终保持EF∥BC.记△EFG在四边形ABCD内部运动过程中“能够扫到的部分”的面积为S.
(1)如图①所示,当a=8时,△EFG在四边形ABCD内部运动过程中“能够扫到的部分”即为六边形HIBCJK,则S=
 

(2)如图②所示,当a=10时,求S的值;
(3)如图③所示,当a=2时,求S的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的内角和为2×180°=360°,五边形ABCDE的内角和为3×180°=540°,…由此可见:
(1)六边形的内角和为
720
720
度;
(2)n边形的内角和为
(n-2)×180
(n-2)×180
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是由四个边长为1的正六边形所围住,则四边形ABCD的面积是(     )
A.1B.2C.D.

查看答案和解析>>

同步练习册答案