精英家教网 > 初中数学 > 题目详情
18.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则
∠CPD的度数是60°.

分析 根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠CPD的度数.

解答 解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,
∴∠BCD+∠CDE=540°-300°=240°,
∵∠BCD、∠CDE的平分线在五边形内相交于点O,
∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,
∴∠CPD=180°-120°=60°.
故答案是:60;

点评 本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.下列汽车标志中,是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.用长方形纸片按照下列步骤折叠:

第一步:如图①,将长方形纸片沿着虚线对折得到图②;
第二步:如图③,沿虚线剪开即可得到如图④.
你到的是什么图形?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在平面直角坐标系xOy中,边长为2的正方形OCBA,点A、C分别在x轴、y轴上,把正方形绕点O逆时针旋转α 度后得到正方形OC1B1A1( 0<α<90)﹒
(1)直线OB的表达式是y=x;
(2)在直线OB上找一点P(原点除外),使△PB1A1为等腰直角三角形,则点P的坐标是(2$\sqrt{2}$,2$\sqrt{2}$),($\sqrt{10}$,$\sqrt{10}$),($\sqrt{5}$,$\sqrt{5}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知:BD、CE是△ABC的高,直线BD、CE相交所成的角中有一个角为50°,则∠BAC的度数为50°或130°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,AD为锐角△ABC的高线(AC>AB),H为线段AD上一点,连结BH,CH并延长分别交三角形的边于点E,F,且∠ABE=∠ACF,求证:H为△ABC的垂心.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在△ABC中,∠B=90°,AB=6cm,点P从点A开始沿AB向B以1cm/s的速度移动,点Q从点B开始沿BC向C点以2cm/s的速度移动,如果P,Q分别从A,B同时出发,2或4秒后△PBQ的面积等于8cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知△ABC中,AB=AC,点D为BC上一点,∠BAC=∠DAE,AD=AE,连接CE.
(1)当∠BAC=90°时,如图1,直接写出线段CE、CD、BC的数量关系CE+CD=BC;
(2)当∠BAC=120°时,如图2,求证:CE+CD=BC;
(3)在(2)的条件下,点G为AC的中点,连接BG,∠BAD=∠ABG,若AE=7,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知实数a,b,c(5<c<20),a,b为一元二次方程x2-17x+45=-c+3的两个解,方程a(x-c)2+b=ax2-80x+403+c.
求a,b,c.

查看答案和解析>>

同步练习册答案