精英家教网 > 初中数学 > 题目详情

【题目】定义:如图l所示,给定线段MN及其垂直平分线上一点P。若以点P为圆心,PM为半径的优弧(或半圆弧)MN上存在三个点可以作为一个等边三角形的顶点,则称点P为线段MN的“三足点”,特别的,若这样的等边三角形只存在一个,则称点P为线段MN的“强三足点”。

问题:如图2所示,平面直角坐标系xOy中,点A的坐标为(2,0),点B在射线y=x(x≥0)上。

(1)在点C(,0),D(,1),E(,-2)中,可以成为线段OA的“三足点”的是__________.

(2)若第一象限内存在一点Q既是线段OA的“三足点”,又是线段OB的“强三足点”,求点B的坐标。

(3)在(2)的条件下,以点A为圆心,AB为半径作圆,假设该圆与x轴交点中右侧一个为H,圆上一动点K从H出发,绕A顺时针旋转180°后停止,设点K出发后转过的角度为(0°< ≤180°),若线段OB与AK不存在公共“三足点”,请直接写出的取值范围是_______________。

【答案】(1)D、E;

(2)B(3,3)。

(3)30°< <90°或=150°。

【解析】试题分析:(1)用排除法判断;(2) 由题意可知Q点既为线段OA三足点,又是线段OB强三足点,则点Q须满足在OAOB的垂直平分线上,且∠QOB=30°

y=xx轴的夹角为30°∴∠QOA=60°.设点Q的坐标为(m,n)Q点在OA的垂直平分线上,故m= QB=QO= ,所以B(

(3)这个圆正好过OQ点,F点坐标为(0)由于三足点存在要求等腰三角形顶角≤120度,通过画图可以算出a的范围为:30° <a<90°,及a=150°,此时AK的中垂线与OB的中垂线平行,没有交点根据线段OB的三足点在射线AE和射线QF上,即线段AK的三足点要与这两条射线有交点

试题解析:

1DE

2)点Q既是线段OA三足点,又是线段OB强三足点

依题可知,∠OQB=120°QOB=30°QOA=60°

Q3.

OQ=BQ=2BQOA

B33.

3)依题可知:

线段OB的三足点在射线AE和射线QF上,

即线段AK的三足点要与这两条射线有交点,

0< ≤30°90°≤<150°150°< ≤180°存在交点。

故若不存在,则30°< <90°=150°.

点睛:在这类问题中,首要的是理解新概念,总结和发现新规律,然后通过模仿,类比或归纳解决问题,关键是理解题中所给的新颖的解题方法,然后利用转化思想根据背景材料将要求的问题转化为阅读得来的方法来解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为节约能源,某市众多车主响应号召,将燃油汽车改装为天然气汽车.某日上午7:00-8:00, 燃气公司给该城西加气站的储气罐加气,8:00 加气站开始为前来的车辆加气. 储气罐内的天然气总量y(立方米)随加气时间x(时)的变化而变化.

(1)在7:00-8:00 范围内,y 随x的变化情况如图13 所示,求y 关于x 的函数解析式;

(2)在8:00-12:00 范围内,y 的变化情况如下表所示,请写出一个符合表格中数据的y 关于x 的函数解析式,依此函数解析式,判断上午9:05 到9:20 能否完成加气950 立方米的任务,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是(
A.△ACE≌△BCD
B.△BGC≌△AFC
C.△ADB≌△CEA
D.△DCG≌△ECF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解:x3y﹣4x2y2+4xy3=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,D为AB中点,DE⊥DF.
(1)写出图中所有全等三角形,分别为 . (用“≌”符号表示)
(2)求证:ED=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的方程 的解互为相反数,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知线段AB=12cm,点E在AB上,且AE= AB,延长线段AB到点C,使BC= AB,点D是BC的中点,求线段DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一个图形整体沿着某一直线方向移动,会得到一个新的图形,这种移动就叫做_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把方程x28x70变形为(xh)2k的形式应为

A.(x4)2=-7B.(x4)2=-7C.(x4)29D.(x4)29

查看答案和解析>>

同步练习册答案