精英家教网 > 初中数学 > 题目详情
8.若一次函数y=(m-3)x+5的函数值,y随x的增大而增大,则(  )
A.m<0B.m>0C.m<3D.m>3

分析 直接根据一次函数的性质可得m-3>0,解不等式即可确定答案.

解答 解:∵一次函数y=(m-3)x+5中,y随着x的增大而增大,
∴m-3>0,
解得:m>3.
故选:D

点评 本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照“提高电价”收费.设每个家庭月用电量为x度时,应交电费为y元.具体收费情况如折线图所示,请根据图象回答下列问题:
(1)“基础电价”是0.5元/度;
(2)求出当x>240时,y与x的函数表达式;
(3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.问题再现:
如图1:△ABC中,AF为BC边上的中线,则S△ABF=S△ACP=$\frac{1}{2}$S△ABC
由这个结论解答下列问题:
问题解决:
问题1:如图2,△ABC中,CD为AB边上的中线,BE为AC边上的中线,则S△BOC=S四边形ADOE
 分析:△ABC中,CD为AB边上的中线,则S△BCD=$\frac{1}{2}$S△ABC,BE为AC边上的中线,则S△ABE=$\frac{1}{2}$S△ABC
∴S△BCD=S△ABE
∴S△BCD-S△BOD=S△ABE-S△BOD
又∵S△BOC=S△BCD-S△BOD,S四边形ADOE=S△ABE-S△BOD
即S△BOC=S四边形ADOE
问题2:如图3,△ABC中,CD为AB边上的中线,BE为AC边上的中线,AF为BC边上的中线.
(1)S△BOD=S△COE吗?请说明理由.
(2)请直接写出△BOD的面积与△ABC的面积之间的数量关系:S△BOD=$\frac{1}{6}$S△ABC
问题拓广:
(1)如图4,E、F分别为四边形ABCD的边AD、BC的中点,请直接写出阴影部分的面积与四边形ABCD的面积之间的数量关系:S=$\frac{1}{2}$S四边形ABCD
(2)如图5,E、F、G、H分别为四边形ABCD的边AD、BC、AB、CD的中点,请直接写出阴影部分的面积与四边形ABCD的面积之间的数量关系:S=$\frac{1}{3}$S四边形ABCD
(3)如图6,E、F、G、H分别为四边形ABCD的边AD、BC、AB、CD的中点,
若S△AME=1、S△BNG=1.5、S△CQF=2、S△BFH△DFH=2.5,则S=7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,每个小正方形的边长为1,△ABC的三个顶点都在格点(小正方形的顶点)上.
(1)己知A(-3,2).建立平面直角坐标系并写出B、C的坐标;
(2)将△ABC先向右平移6个单位,再向上平移3个单位得△A1B1C1,画出平移后的△A1B1C1
(3)若以A、B、C、D为顶点的四边形为平行四边形,直接写出D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图所示,AB∥CD,∠B+∠D=180°.求证:BC∥DE
证明:∵AB∥CD  已知
∴∠B=∠C(两直线平行,内错角相等)
∵∠B+∠D=180°已知
∴∠C+∠D=180°  (等量代换)
∴BC∥DE(同旁内角互补,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.
(1)试找出它们的共同点,并证明你的结论;
(2)写出当a=17时,b,c的值.
3,4,5  32+42=52
 5,12,13, 52+122=132
 7,24,25 72+242=252
 9,40,41 92+402=412
 17,b,c 172+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.完成证明,说明理由.已知:如图,BC∥DE,点E在AB边上,DE、AC交于点F,∠1=∠2,∠3=∠4,求证AE∥CD.
证明:∵BC∥DE(已知),
∴∠4=∠FCB(两直线平行,同位角相等).
∵∠3=∠4(已知),
∴∠3=∠FCB(等量代换).
∵∠1=∠2(已知),
∴∠1+∠FCE=∠2+∠FCE(等式的性质).
即∠FCB=∠ECB,
∴∠3=∠ECD(等量代换).
∴AE∥CD(内错角相等,两直线平行).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知一个等腰三角形的两边长分别为$\sqrt{18}$和$\sqrt{50}$,则这个等腰三角形的周长为(  )
A.11$\sqrt{2}$B.13$\sqrt{2}$C.11$\sqrt{3}$或$\sqrt{3}$D.11$\sqrt{2}$或13$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知点P(m,n)在第四象限,那么点Q(n-1,-m)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案