精英家教网 > 初中数学 > 题目详情
已知,如图,抛物线y=-x2+bx+c与x轴,y轴分别相交于点A(-1,0),B(0,3)两点,其顶点为D
(1)求该抛物线的解析式;
(2)若抛物线与x轴另一个交点为E,求四边形ABDE的面积.
(1)将点A(-1,0),B(0,3)两点代入解析式可得:
-1-b+c=0
c=3

解得:
b=2
c=3

故该抛物线的解析式为:y=-x2+2x+3.

(2)由函数解析式为y=-x2+2x+3,可得点D坐标为:(1,4),点E坐标为(3,0),
过点D作DF⊥x轴,交x轴于点F,

则点F坐标为(1,0),
从而可得S△ABO=
1
2
AO×BO=
3
2

S梯形BOFD=
1
2
(BO+DF)×OF=
7
2
,S△DFE=
1
2
EF×DF=4,
故可得S四边形ABDE=S△ABO+S梯形BOFD+S△DFE=9.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+b经过点A(4,4)和点B(0,-4).C是x轴上的一个动点.
(1)求抛物线的解析式;
(2)若点C在以AB为直径的圆上,求点C的坐标;
(3)将点A绕C点逆时针旋转90°得到点D,当点D在抛物线上时,求出所有满足条件的点C的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:
(1)求该抛物线的解析式;
(2)根据图象回答:当x为何范围时,该函数值大于0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线y=a(x-2)2-2的顶点为C,抛物线与x轴交于A,B两点(其中A点在B点的左边),CH⊥AB于H,且tan∠ACH=
1
2

(1)求抛物线的解析式;
(2)在坐标平面内是否存在一点D,使得以O、B、C、D为顶点的四边形是等腰梯形?若存在,求所有的符合条件的D点的坐标;若不存在,请说明理由;
(3)如图2,将(1)中的抛物线平移,使其顶点在y轴的正半轴上,在y轴上是否存在一点M,使得平移后的抛物线上的任意一点P到x轴的距离与P点到M的距离相等?若存在,求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形OABC的两边在坐标轴上,且A(0,-2),AB=4,连接AC,抛物线y=x2+bx+c经过A,B两点.点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动.
(1)求抛物线的解析式;
(2)当P运动到OC上时,设点P的移动时间为t秒,当PQ⊥AC时,求t的值;
(3)当PQAC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,一座抛物线型拱桥,桥下水面宽度是4m,拱高是2m,当水面下降1m后,水面宽度是多少?(
6
=2.45,结果保留0.1m)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=
1
2
x2+mx+n交x轴于A、B两点,直线y=kx+b经过点A,与这条抛物线的对称轴交于点M(1,2),且点M与抛物线的顶点N关于x轴对称.
(1)求这条抛物线的函数关系式;
(2)根据图象,写出函数值y为负数时,自变量x的取值范围;
(3)设题中的抛物线与直线的另一交点为C,已知P(x,y)为直线AC上一点,过点P作PQ⊥x轴,交抛物线于点Q.当-1≤x≤1.5时,求线段PQ的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某校课外活动小组准备利用学校的一面墙,用长为30米的篱笆围成一个矩形生物苗圃园.
(1)若墙长为18米(如图所示),当垂直于墙的一边的长为多少米时,这个苗圃园的面积等于88平方米?
(2)当垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某海参养殖公司经市场调研发现,每周该公司销售的海参量y(千克)与单价x(元/千克)之间存在如图所示的一次函数关系.
(1)根据图象求y与x之间的函数表达式;
(2)从经济效益来看,你认为该公司如何制定海参单价,能使每周海参的销售收入最高?每周海参的最高销售收入是多少?

查看答案和解析>>

同步练习册答案