精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2+bx+c的图象过点A(-1,3)和B(2,0),直线AB交y轴于精英家教网点C,二次函数图象的顶点为D.
(1)求二次函数的解析式;
(2)若点P在射线AB上(不与点C重合),且△AOC∽△APO,试求点P的坐标;
(3)在(2)的条件下求tan∠APD的值.
分析:(1)将A、B的坐标代入抛物线的解析式中,即可求得待定系数的值;
(2)由于P、C不重合,若△AOC∽△APO,只有一种情况,即∠AOC与∠APO对应相等,可根据相似三角形得到的比例线段求出AP的长;然后根据直线AC的解析式设出P点的坐标,根据P、A的坐标表示出AP的长,联立上面得到的AP的值,即可求出P点的坐标;
(3)根据P点的坐标,易求得∠PBH=45°;连接BD后发现∠OBD=45°,由此可证得∠PBD=90°,那么∠APD的正切值即为BD、PB的比,由此得解.
解答:解:(1)∵二次函数y=x2+bx+c的图象过点A(-1,3)和B(2,0),
3=1-b+c
0=4+2b+c
.(2分)
解得 b=-2,c=0.
∴y=x2-2x;                                        (2分)

(2)设直线AB的解析式为y=kx+b,则
3=-k+b
0=2k+b

解得 k=-1,b=2.
∴直线AB的解析式为y=-x+2,(1分)
∴C(0,2).(1分)
∵点P在射线AB上,且△AOC∽△APO,
∴∠A=∠A,
∴AO2=AC×AP,即10=
2
•AP

AP=5
2
.(1分)
∵点P在直线AB上,精英家教网
∴设P(x,2-x),
(x+1)2+(2-x-3)2=(5
2
)2

解得 x=4或-6(舍),
∴P(4,-2).(1分)

(3)∵y=x2-2x,
∴顶点D(1,-1).(1分)
连BD,作PH⊥x轴.
∵B(2,0),P(4,-2),
∴∠OBD=45°,∠HBP=45°,
∴∠DBP=90°,(1分)
∴tan∠APD=
BD
BP
=
2
2
2
=
1
2
.                         (2分)
点评:此题考查了二次函数解析式的确定、相似三角形的判定、直角三角形的判定、锐角三角函数的定义等知识,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案