精英家教网 > 初中数学 > 题目详情
8.(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;
(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;
(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则$\frac{EB}{AD}$的值是多少?(直接写出结论,不要求写解答过程)

分析 (1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;
(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论;
(3)作DF∥BC交AC于F,同(1)得:△DBE≌△CFD,得出EB=DF,证出△ADF是等腰直角三角形,得出DF=$\sqrt{2}$AD,即可得出结果.

解答 (1)证明:作DF∥BC交AC于F,如图1所示:
则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,
∵△ABC是等腰三角形,∠A=60°,
∴△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,
∴△ADF是等边三角形,∠DFC=120°,
∴AD=DF,
∵∠DEC=∠DCE,
∴∠FDC=∠DEC,ED=CD,
在△DBE和△CFD中,$\left\{\begin{array}{l}{∠DEC=∠FDC}&{\;}\\{∠DBE=∠DFC=120°}&{\;}\\{ED=CD}&{\;}\end{array}\right.$,
∴△DBE≌△CFD(AAS),
∴EB=DF,
∴EB=AD;
(2)解:EB=AD成立;理由如下:
作DF∥BC交AC的延长线于F,如图2所示:
同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,
又∵∠DBE=∠DFC=60°,
∴在△DBE和△CFD中,$\left\{\begin{array}{l}{∠DEC=∠FDC}&{\;}\\{∠DBE=∠DFC}&{\;}\\{ED=CD}&{\;}\end{array}\right.$,
∴△DBE≌△CFD(AAS),
∴EB=DF,
∴EB=AD;
(3)解:$\frac{EB}{AD}$=$\sqrt{2}$;理由如下:
作DF∥BC交AC于F,如图3所示:
同(1)得:△DBE≌△CFD(AAS),
∴EB=DF,
∵△ABC是等腰直角三角形,DF∥BC,
∴△ADF是等腰直角三角形,
∴DF=$\sqrt{2}$AD,
∴$\frac{DF}{AD}$=$\sqrt{2}$,
∴$\frac{EB}{AD}$=$\sqrt{2}$.

点评 本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、等腰直角三角形的判定与性质、平行线的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知AB是⊙O直径,点C、D是⊙O上两点,连接AD、CD、AC.
(1)如图1,过点D作⊙O的切线MN,当MN∥AC时,求证:∠ADM=∠ADN;
(2)如图2,连接BD交AC于点E,当CD=OA时,求证:∠BEC=60°;
(3)在(2)的条件下,取$\widehat{AB}$中点F,若E为BD中点,CD=7,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD成轴对称的△BC′D.
(1)当∠CBD=15°时,求点C′的坐标.
(2)当图1中的直线l经过点A,且k=-$\frac{\sqrt{3}}{3}$时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.
(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作与△DOE成轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是(  )
A.pB.qC.mD.n

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).
(1)求a,b的值;
(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为$\frac{1}{3}$,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为(  )
A.(3,2)B.(3,1)C.(2,2)D.(4,2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:$|{1-\sqrt{3}}|-3tan{60°}+\sqrt{12}+{(π-3.14)^0}+{(-1)^{2016}}$.

查看答案和解析>>

同步练习册答案