精英家教网 > 初中数学 > 题目详情
如图,把矩形ABCD沿EF折叠,使点A与点C重叠.AB=8,BC=16,求DF的长.
分析:根据矩形的对边相等可得AD=BC,CD=AB,再根据翻折的性质可得CF=AF,再用DF表示出CF,然后在Rt△CDF中利用勾股定理列出方程求解即可.
解答:解:在矩形ABCD中,∵AB=8,BC=16,
∴AD=BC=16,CD=AB=8,
由翻折的性质得,CF=AF,
∴CF=AD-DF=16-DF,
在Rt△CDF中,CD2+DF2=CF2
即82+DF2=(16-DF)2
解得DF=6.
点评:本题考查了翻折变换的性质,勾股定理的应用,矩形的性质,熟记性质并利用勾股定理列出方程是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,把矩形ABCD沿直线EF折叠,使点C与A重合.
(1)只使用直尺和圆规,作出折痕EF,其与AD交于F,BC于E,并作出点D的对应点D′.
(2)连接AE、CF,猜想四边形AECF是什么特殊四边形?并证明你的结论.
(3)当AB=12,AD=18时,求折痕EF长.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,把矩形ABCD沿对角线BD对折,使点C落在点C′处,试证明AE=C′E.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把矩形ABCD沿EF折叠,若∠1=50°,则∠AEF等于
115°
115°

查看答案和解析>>

同步练习册答案