精英家教网 > 初中数学 > 题目详情

【题目】一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是红球的概率为

1)布袋里红球有______个.

2)先从布袋中摸出个球后不放回,再摸出1个球,请用列表或画树状图的方法求出两次摸到的球都是白球的概率.

【答案】11;(2

【解析】

1)设红球的个数为x个,根据概率公式得到,然后解方程即可;(2)先画树状图展示所有12种等可能结果,再找出两次摸到的球都是白球的结果数,然后根据概率公式计算.

1)设红球的个数为x个,

根据题意得

解得x1

经检验:x=1是原分式方程的解,

∴布袋里红球有1个,

故答案为:1

2)画树状图如下:

共有12种等可能结果,其中两次摸到的球都是白球结果数为2种,

所以两次摸到的球都是白球的概率=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图1,在以O为原点的平面直角坐标系中,抛物线yx2+bx+cx轴交于AB两点,与y轴交于点C0,﹣1),连接ACAO2CO,直线l过点G0t)且平行于x轴,t<﹣1

1)求抛物线对应的二次函数的解析式;

2)若D(﹣4m)为抛物线yx2+bx+c上一定点,点D到直线l的距离记为d,当dDO时,求t的值.

3)如图2,若E(﹣4m)为上述抛物线上一点,在抛物线上是否存在点F,使得△BEF是直角三角形,若存在求出点F的坐标,若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在RtABC中,ACB=90°,现按如下步骤作图:

分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;

过M,N两点作直线MN交AB于点D,交AC于点E;

ADE绕点E顺时针旋转180°,设点D的像为点F

(1)请在图中直线标出点F并连接CF;

(2)求证:四边形BCFD是平行四边形;

(3)当B为多少度时,四边形BCFD是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.

1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.

2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC内接于⊙O,且AB=AC,⊙O的半径为6cm ,OBC的距离为2cm,AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线yax2+bx4经过点A(﹣80),对称轴是直线x=﹣3,点B是抛物线与y轴交点,点MN同时从原点O出发,以每秒1个单位长度的速度分别沿x轴的负半轴、y的负半轴方向匀速运动,(当点N到达点B时,点MN同时停止运动).过点Mx轴的垂线,交直线AB于点C,连接CNMN,并作CMN关于直线MC的对称图形,得到CMD.设点N运动的时间为t秒,CMDAOB重叠部分的面积为S

1)求抛物线的函数表达式;

2)当0t2时,

①求St的函数关系式.

②直接写出当t_____时,四边形CDMN为正方形.

3)当点D落在边AB上时,过点C作直线EF交抛物线于点E,交x轴于点F,连接EB,当SCBESACF13时,直接写出点E的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:

时间t()

0

0.2

0.4

0.6

0.8

1.0

1.2

行驶距离s()

0

2.8

5.2

7.2

8.8

10

10.8

假设这种变化规律一直延续到汽车停止.

(1)根据这些数据在给出的坐标系中画出相应的点;

(2)选择适当的函数表示st之间的关系,求出相应的函数解析式;

(3)①刹车后汽车行驶了多长距离才停止?

②当t分别为t1,t2(t1<t2),对应s的值分别为s1,s2,请比较的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在x轴的正半轴上依次间隔相等的距离取点A1A2A3A4,…,An,分别过这些点做x轴的垂线与反比例函数y的图象相交于点P1P2P3P4,…Pn,再分别过P2P3P4,…PnP2B1A1P1P3B2A2P2P4B3A3P3,…,PnBn1An1Pn1,垂足分别为B1B2B3B4,…,Bn1,连接P1P2P2P3P3P4,…,Pn1Pn,得到一组RtP1B1P2RtP2B2P3RtP3B3P4,…,RtPn1Bn1Pn,则RtPn1Bn1Pn的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解全校2000名学生的课外阅读情况,在全校范围内随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,将结果绘制成频数分布直方图(如图所示).

1)请分别计算这50名学生在这一天课外阅读所用时间的众数、中位数和平均数;

2)请你根据以上调查,估计全校学生中在这一天课外阅读所用时间在1.0小时以上(含1.0小时)的有多少人?

查看答案和解析>>

同步练习册答案